BAIT

HRD1

DER3, E3 ubiquitin-protein ligase HRD1, L000002963, YOL013C
Ubiquitin-protein ligase; functions in ER retention of misfolded proteins; required for ER-associated degradation (ERAD) of misfolded proteins; genetically linked to the unfolded protein response (UPR); regulated through association with Hrd3p; contains an H2 ring finger; likely plays a general role in targeting proteins that persistently associate with and potentially obstruct the ER-localized translocon
Saccharomyces cerevisiae (S288c)
PREY

HAC1

ERN4, IRE15, transcription factor HAC1, L000002611, YFL031W
Basic leucine zipper (bZIP) transcription factor (ATF/CREB1 homolog); regulates the unfolded protein response, via UPRE binding, and membrane biogenesis; ER stress-induced splicing pathway facilitates efficient Hac1p synthesis; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Usa1 functions as a scaffold of the HRD-ubiquitin ligase.

Horn SC, Hanna J, Hirsch C, Volkwein C, Schuetz A, Heinemann U, Sommer T, Jarosch E

Protein quality control in the endoplasmic reticulum is of central importance for cellular homeostasis in eukaryotes. Crucial for this process is the HRD-ubiquitin ligase (HMG-CoA reductase degradation), which singles out terminally misfolded proteins and routes them for degradation to cytoplasmic 26S-proteasomes. Certain functions of this enzyme complex are allocated to defined subunits. However, it remains unclear how these components act ... [more]

Mol. Cell Dec. 11, 2009; 36(5);782-93 [Pubmed: 20005842]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: heat sensitivity (APO:0000147)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
HAC1 HRD1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.8429BioGRID
377326
HAC1 HRD1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4154BioGRID
2112094
HRD1 HAC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7427BioGRID
2178466
HRD1 HAC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-15.0052BioGRID
581507
HAC1 HRD1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-8.149BioGRID
208783
HRD1 HAC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-8.149BioGRID
208847
HAC1 HRD1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
575657

Curated By

  • BioGRID