BAIT

AGE2

SAT2, S000007503, YIL044C
ADP-ribosylation factor (ARF) GTPase activating protein (GAP) effector; involved in Trans-Golgi-Network (TGN) transport; contains C2C2H2 cysteine/histidine motif
GO Process (2)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

GCS1

L000000693, YDL226C
ADP-ribosylation factor GTPase activating protein (ARF GAP); involved in ER-Golgi transport; required for prospore membrane formation; regulates phospholipase Spo14p; shares functional similarity with Glo3p; GCS1 has a paralog, SPS18, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

The Yeast Arf GTPase-activating Protein Age1 Is Regulated by Phospholipase D for Post-Golgi Vesicular Transport.

Benjamin JJ, Poon PP, Lewis SM, Auger A, Wong TA, Singer RA, Johnston GC

Vesicular transport shuttles cargo among intracellular compartments. Several stages of vesicular transport are mediated by the small GTPase Arf, which is controlled in a cycle of GTP binding and hydrolysis by Arf guanine-nucleotide exchange factors and Arf GTPase-activating proteins (ArfGAPs), respectively. In budding yeast the Age2 + Gcs1 ArfGAP pair facilitates post-Golgi transport. We have found the AGE1 gene, encoding ... [more]

J. Biol. Chem. Feb. 18, 2011; 286(7);5187-96 [Pubmed: 21135091]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: heat sensitivity (APO:0000147)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GCS1 AGE2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.8298BioGRID
362252
AGE2 GCS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.8298BioGRID
388210
AGE2 GCS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6364BioGRID
2131471
GCS1 AGE2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7453BioGRID
2092175
AGE2 GCS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-5.7917BioGRID
206375
GCS1 AGE2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
208265
GCS1 AGE2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158073
GCS1 AGE2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
196198
AGE2 GCS1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
161542

Curated By

  • BioGRID