ATR
Gene Ontology Biological Process
- DNA damage checkpoint [IDA]
- DNA repair [TAS]
- DNA replication [TAS]
- cell cycle [TAS]
- cellular response to DNA damage stimulus [TAS]
- cellular response to UV [IMP]
- cellular response to gamma radiation [IDA]
- double-strand break repair via homologous recombination [IBA]
- multicellular organismal development [TAS]
- negative regulation of DNA replication [IMP]
- peptidyl-serine phosphorylation [IDA]
- positive regulation of DNA damage response, signal transduction by p53 class mediator [IMP]
- protein autophosphorylation [IDA]
- replicative senescence [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MSH2
Gene Ontology Biological Process
- ATP catabolic process [IBA, IDA]
- B cell differentiation [ISS]
- B cell mediated immunity [ISS]
- DNA repair [IDA]
- double-strand break repair [IBA]
- intra-S DNA damage checkpoint [IBA]
- intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator [IBA]
- isotype switching [IBA, ISS]
- maintenance of DNA repeat elements [IMP]
- male gonad development [ISS]
- meiotic gene conversion [IBA]
- meiotic mismatch repair [IBA]
- mismatch repair [IDA, IGI]
- negative regulation of DNA recombination [IDA, ISS]
- negative regulation of neuron apoptotic process [ISS]
- negative regulation of reciprocal meiotic recombination [IBA]
- positive regulation of helicase activity [IDA]
- postreplication repair [IDA]
- response to UV-B [IBA, ISS]
- response to X-ray [IBA, ISS]
- somatic hypermutation of immunoglobulin genes [IBA]
- somatic recombination of immunoglobulin gene segments [ISS]
Gene Ontology Molecular Function- ADP binding [IDA]
- ATP binding [IDA]
- ATPase activity [IDA]
- DNA binding [IDA]
- DNA-dependent ATPase activity [IBA]
- MutLalpha complex binding [IDA]
- Y-form DNA binding [IBA]
- dinucleotide insertion or deletion binding [IDA]
- dinucleotide repeat insertion binding [IDA]
- double-strand/single-strand DNA junction binding [IBA]
- double-stranded DNA binding [IDA]
- enzyme binding [IPI]
- four-way junction DNA binding [IDA]
- guanine/thymine mispair binding [IDA, IMP]
- heteroduplex DNA loop binding [IBA]
- magnesium ion binding [IDA]
- mismatched DNA binding [IDA]
- oxidized purine DNA binding [IDA]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- protein kinase binding [IPI]
- single guanine insertion binding [IDA]
- single thymine insertion binding [IDA]
- single-stranded DNA binding [IDA]
- ADP binding [IDA]
- ATP binding [IDA]
- ATPase activity [IDA]
- DNA binding [IDA]
- DNA-dependent ATPase activity [IBA]
- MutLalpha complex binding [IDA]
- Y-form DNA binding [IBA]
- dinucleotide insertion or deletion binding [IDA]
- dinucleotide repeat insertion binding [IDA]
- double-strand/single-strand DNA junction binding [IBA]
- double-stranded DNA binding [IDA]
- enzyme binding [IPI]
- four-way junction DNA binding [IDA]
- guanine/thymine mispair binding [IDA, IMP]
- heteroduplex DNA loop binding [IBA]
- magnesium ion binding [IDA]
- mismatched DNA binding [IDA]
- oxidized purine DNA binding [IDA]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- protein kinase binding [IPI]
- single guanine insertion binding [IDA]
- single thymine insertion binding [IDA]
- single-stranded DNA binding [IDA]
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
hMSH2 recruits ATR to DNA damage sites for activation during DNA damage-induced apoptosis.
DNA damage response (DDR) activates a complex signaling network that triggers DNA repair, cell cycle arrest, and/or cell death. Depending on the type and severity of DNA lesion, DDR is controlled by master regulators including ATM and ATR protein kinases. Cisplatin, a major chemotherapy drug that cross-links DNA, induces ATR-dependent DDR resulting in apoptosis. However, it is unclear how ATR ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| ATR MSH2 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
| MSH2 ATR | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
| ATR MSH2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| MSH2 ATR | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| ATR MSH2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| ATR MSH2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| MSH2 ATR | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| MSH2 ATR | Co-localization Co-localization Interaction inferred from two proteins that co-localize in the cell by indirect immunofluorescence only when in addition, if one gene is deleted, the other protein becomes mis-localized. Also includes co-dependent association of proteins with promoter DNA in chromatin immunoprecipitation experiments. | Low | - | BioGRID | 514046 | |
| MSH2 ATR | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID