SET2
Gene Ontology Biological Process
- DNA-templated transcription, elongation [IDA, IPI]
- DNA-templated transcription, termination [IMP]
- ascospore formation [IMP]
- histone deacetylation [IMP]
- histone methylation [IDA, IMP]
- negative regulation of antisense RNA transcription [IMP]
- negative regulation of histone H3-K14 acetylation [IMP]
- negative regulation of histone H3-K9 acetylation [IMP]
- negative regulation of reciprocal meiotic recombination [IMP]
- positive regulation of histone acetylation [IGI]
- regulation of DNA-dependent DNA replication initiation [IMP]
- regulation of histone exchange [IMP]
- regulation of transcription, DNA-templated [IDA, IMP]
Gene Ontology Molecular Function
BRE5
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1.
Deletions of three yeast genes, SET2, CDC73, and DST1, involved in transcriptional elongation and/or chromatin metabolism were used in conjunction with genetic array technology to screen approximately 4700 yeast deletions and identify double deletion mutants that produce synthetic growth defects. Of the five deletions interacting genetically with all three starting mutations, one encoded the histone H2A variant Htz1 and three ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- interaction determined by SGA
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SET2 BRE5 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 450621 | |
SET2 BRE5 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low/High | - | BioGRID | 82355 |
Curated By
- BioGRID