TP53
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator [IDA, IMP]
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator [IMP]
- DNA strand renaturation [IDA]
- ER overload response [IDA]
- Notch signaling pathway [TAS]
- Ras protein signal transduction [IEP]
- apoptotic process [TAS]
- base-excision repair [TAS]
- blood coagulation [TAS]
- cell aging [IMP]
- cell cycle arrest [IDA, IMP]
- cell differentiation [TAS]
- cell proliferation [TAS]
- cellular protein localization [IDA]
- cellular response to DNA damage stimulus [IDA]
- cellular response to UV [IBA]
- cellular response to drug [IEP]
- cellular response to glucose starvation [IDA]
- cellular response to hypoxia [IEP]
- cellular response to ionizing radiation [IMP]
- chromatin assembly [IDA]
- determination of adult lifespan [ISS]
- intrinsic apoptotic signaling pathway [TAS]
- intrinsic apoptotic signaling pathway by p53 class mediator [IMP]
- intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator [IDA]
- mitotic G1 DNA damage checkpoint [IMP]
- multicellular organismal development [IMP]
- negative regulation of apoptotic process [IDA]
- negative regulation of cell growth [IMP]
- negative regulation of cell proliferation [ISS]
- negative regulation of fibroblast proliferation [IMP]
- negative regulation of helicase activity [TAS]
- negative regulation of transcription from RNA polymerase II promoter [IBA, IDA, ISS]
- negative regulation of transcription, DNA-templated [ISS]
- nucleotide-excision repair [IMP]
- oligodendrocyte apoptotic process [IDA]
- oxidative stress-induced premature senescence [IMP]
- positive regulation of apoptotic process [IDA]
- positive regulation of cell cycle arrest [IMP]
- positive regulation of histone deacetylation [IBA]
- positive regulation of intrinsic apoptotic signaling pathway [IMP]
- positive regulation of neuron apoptotic process [IBA]
- positive regulation of peptidyl-tyrosine phosphorylation [ISS]
- positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway [TAS]
- positive regulation of protein oligomerization [IDA]
- positive regulation of reactive oxygen species metabolic process [IMP]
- positive regulation of release of cytochrome c from mitochondria [IDA]
- positive regulation of thymocyte apoptotic process [ISS]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IGI, IMP]
- positive regulation of transcription, DNA-templated [IDA, IMP]
- protein complex assembly [IDA]
- protein localization [IDA]
- protein tetramerization [TAS]
- regulation of apoptotic process [IDA]
- regulation of mitochondrial membrane permeability [TAS]
- regulation of transcription, DNA-templated [IDA]
- replicative senescence [IMP]
- response to X-ray [IBA]
- response to antibiotic [IEP]
- response to gamma radiation [IMP]
Gene Ontology Molecular Function- ATP binding [IDA]
- DNA binding [IMP]
- RNA polymerase II transcription factor binding [IPI]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- chaperone binding [IPI]
- chromatin binding [IDA]
- copper ion binding [IDA]
- damaged DNA binding [IBA]
- enzyme binding [IPI]
- histone acetyltransferase binding [IPI]
- identical protein binding [IPI]
- p53 binding [IBA]
- protease binding [IPI]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [IPI]
- protein kinase binding [IPI]
- protein phosphatase 2A binding [IPI]
- protein phosphatase binding [IPI]
- receptor tyrosine kinase binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
- zinc ion binding [TAS]
- ATP binding [IDA]
- DNA binding [IMP]
- RNA polymerase II transcription factor binding [IPI]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- chaperone binding [IPI]
- chromatin binding [IDA]
- copper ion binding [IDA]
- damaged DNA binding [IBA]
- enzyme binding [IPI]
- histone acetyltransferase binding [IPI]
- identical protein binding [IPI]
- p53 binding [IBA]
- protease binding [IPI]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [IPI]
- protein kinase binding [IPI]
- protein phosphatase 2A binding [IPI]
- protein phosphatase binding [IPI]
- receptor tyrosine kinase binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
- zinc ion binding [TAS]
Gene Ontology Cellular Component
PRAM1
Gene Ontology Molecular Function
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Impairment of p53 acetylation, stability and function by an oncogenic transcription factor.
Mutations of p53 are remarkably rare in acute promyelocytic leukemias (APLs). Here, we demonstrate that the APL-associated fusion proteins PML-RAR and PLZF-RAR directly inhibit p53, allowing leukemic blasts to evade p53-dependent cancer surveillance pathways. PML-RAR causes deacetylation and degradation of p53, resulting in repression of p53 transcriptional activity, and protection from p53-dependent responses to genotoxic stress. These phenomena are dependent ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID