BAIT

SIZ1

ULL1, SUMO ligase SIZ1, S000007589, YDR409W
SUMO/Smt3 ligase; promotes attachment of small ubiquitin-related modifier sumo (Smt3p) to proteins; regulates Rsp5p ubiquitin ligase activity and is in turn itself regulated by Rsp5p; binds Ubc9p and may bind septins; specifically required for sumoylation of septins in vivo; localized to the septin ring; SIZ1 has a paralog, NFI1, that arose from the whole genome duplication
GO Process (3)
GO Function (1)
GO Component (2)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

MMS21

NSE2, PSO10, SUMO ligase MMS21, L000001125, YEL019C
SUMO ligase and component of the SMC5-SMC6 complex; this complex plays a key role in the removal of X-shaped DNA structures that arise between sister chromatids during DNA replication and repair; required for efficient sister chromatid cohesion; mutants are sensitive to methyl methanesulfonate and show increased spontaneous mutation and mitotic recombination; SUMOylates and inhibits Snf1p function
GO Process (1)
GO Function (2)
GO Component (4)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Cooperation of sumoylated chromosomal proteins in rDNA maintenance.

Takahashi Y, Dulev S, Liu X, Hiller NJ, Zhao X, Strunnikov A

SUMO is a posttranslational modifier that can modulate protein activities, interactions, and localizations. As the GFP-Smt3p fusion protein has a preference for subnucleolar localization, especially when deconjugation is impaired, the nucleolar role of SUMO can be the key to its biological functions. Using conditional triple SUMO E3 mutants, we show that defects in sumoylation impair rDNA maintenance, i.e., the rDNA ... [more]

PLoS Genet. Oct. 01, 2008; 4(10);e1000215 [Pubmed: 18846224]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • genetic complex
  • triple mutants are lethal

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MMS21 SIZ1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7407BioGRID
1974352
SIZ1 MMS21
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
884983
SIZ1 MMS21
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
1255740
MMS21 SIZ1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
521806
SIZ1 MMS21
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
617223
MMS21 SIZ1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
204157
SIZ1 MMS21
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
547131

Curated By

  • BioGRID