BAIT

CTF4

CHL15, POB1, chromatin-binding protein CTF4, L000000326, YPR135W
Chromatin-associated protein; required for sister chromatid cohesion; interacts with DNA polymerase alpha (Pol1p) and may link DNA synthesis to sister chromatid cohesion
Saccharomyces cerevisiae (S288c)
PREY

RAD9

chromatin-binding protein RAD9, L000001562, YDR217C
DNA damage-dependent checkpoint protein; required for cell-cycle arrest in G1/S, intra-S, and G2/M, plays a role in postreplication repair (PRR) pathway; transmits checkpoint signal by activating Rad53p and Chk1p; hyperphosphorylated by Mec1p and Tel1p; multiple cyclin dependent kinase consensus sites and the C-terminal BRCT domain contribute to DNA damage checkpoint activation; Rad9p Chk1 Activating Domain (CAD) is phosphorylated at multiple sites by Cdc28p/Clb2p
Saccharomyces cerevisiae (S288c)

Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Ctf4 coordinates the progression of helicase and DNA polymerase alpha.

Tanaka H, Katou Y, Yagura M, Saitoh K, Itoh T, Araki H, Bando M, Shirahige K

Ctf4 is a protein conserved in eukaryotes and a constituent of the replisome progression complex. It also plays a role in the establishment of sister chromatid cohesion. In our current study, we demonstrate that the replication checkpoint is activated in the absence of Ctf4, and that the interaction between the MCM helicase-go ichi ni san (GINS) complex and DNA polymerase ... [more]

Genes Cells Jul. 01, 2009; 14(7);807-20 [Pubmed: 19496828]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: cell cycle progression in g2 phase (APO:0000254)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CTF4 RAD9
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
256912
CTF4 RAD9
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
518885

Curated By

  • BioGRID