TOM6
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
TOM7
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Genetic and functional interactions between the mitochondrial outer membrane proteins Tom6 and Sam37.
The TOM complex is the general mitochondrial entry site for newly synthesized proteins. Precursors of beta-barrel proteins initially follow this common pathway and are then relayed to the SAM/TOB complex, which mediates their integration into the outer membrane. Three proteins, Sam50 (Tob55), Sam35 (Tob38/Tom38), and Sam37 (Mas37), have been identified as the core constituents of the latter complex. Sam37 is ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
TOM6 TOM7 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4505 | BioGRID | 2182741 | |
TOM7 TOM6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.7981 | BioGRID | 2168229 | |
TOM7 TOM6 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 157437 |
Curated By
- BioGRID