BAIT

LTE1

MSI2, mitotic regulator LTE1, L000000955, YAL024C
Protein similar to GDP/GTP exchange factors; without detectable GEF activity; required for asymmetric localization of Bfa1p at daughter-directed spindle pole bodies and for mitotic exit at low temperatures
GO Process (3)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

SRS2

HPR5, DNA helicase SRS2, RADH1, RADH, L000000809, L000001578, YJL092W
DNA helicase and DNA-dependent ATPase; involved in DNA repair and checkpoint recovery, needed for proper timing of commitment to meiotic recombination and transition from Meiosis I to II; blocks trinucleotide repeat expansion; affects genome stability; disassembles Rad51p nucleoprotein filaments during meiotic recombination; functional homolog of human RTEL1
Saccharomyces cerevisiae (S288c)

Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Publication

Srs2 overexpression reveals a helicase-independent role at replication forks that requires diverse cell functions.

Leon Ortiz AM, Reid RJ, Dittmar JC, Rothstein R, Nicolas A

Srs2 is a 3'-5' DNA helicase that regulates many aspects of DNA metabolism in Saccharomyces cerevisiae. It is best known for its ability to counteract homologous recombination by dismantling Rad51 filaments, but is also involved in checkpoint activation, adaptation and recovery, and in resolution of late recombination intermediates. To further address its biological roles and uncover new genetic interactions, we ... [more]

Unknown Mar. 31, 2011; 0(0); [Pubmed: 21459050]

Throughput

  • High Throughput|Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)
  • phenotype: colony size (APO:0000063)

Additional Notes

  • High Throughput: Three synthetic dosage lethality screens were carried out to identify genes required for cell viability upon overexpression of SRS2 and/or its helicase mutants srs2-K41A and srs2-K41R.
  • Low Throughput: Selected SDL interactions were verified by transforming the overexpression plasmids into each strain and assessing the growth of the transformants using spot-assays.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SRS2 LTE1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
455484

Curated By

  • BioGRID