FET3
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
ENB1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs.
Saccharomyces cerevisiae can import iron through a high-affinity system consisting of the Ftr1/Fet3-mediated reductive pathway and the siderophore-mediated non-reductive one. Expression of components of the high-affinity system is controlled by the Aft1 transcriptional factor. In this study we show that, upon oxidative stress, Aft1 is transitorily internalized into the nucleus, followed by transcription activation of components of its regulon. In ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
- phenotype: resistance to chemicals (APO:0000087)
Additional Notes
- double mutants show increased sensitivity to BPS
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
ENB1 FET3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 2 | BioGRID | 3621293 | |
FET3 ENB1 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene. | Low | - | BioGRID | 2452414 |
Curated By
- BioGRID