BAIT

HXT11

LGT3, hexose transporter HXT11, L000000947, YOL156W
Putative hexose transporter that is nearly identical to Hxt9p; has similarity to major facilitator superfamily (MFS) transporters and is involved in pleiotropic drug resistance
Saccharomyces cerevisiae (S288c)
PREY

PLB1

L000001447, YMR008C
Phospholipase B (lysophospholipase) involved in lipid metabolism; required for efficient acyl chain remodeling of newly synthesized phosphatidylethanolamine-derived phosphatidylcholine; required for deacylation of phosphatidylcholine and phosphatidylethanolamine but not phosphatidylinositol; PLB1 has a paralog, PLB3, that arose from the whole genome duplication
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

An integrated approach to characterize genetic interaction networks in yeast metabolism.

Szappanos B, Kovacs K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, Gelius-Dietrich G, Lercher MJ, Jelasity M, Myers CL, Andrews BJ, Boone C, Oliver SG, Pal C, Papp B

Although experimental and theoretical efforts have been applied to globally map genetic interactions, we still do not understand how gene-gene interactions arise from the operation of biomolecular networks. To bridge the gap between empirical and computational studies, we i, quantitatively measured genetic interactions between ∼185,000 metabolic gene pairs in Saccharomyces cerevisiae, ii, superposed the data on a detailed systems biology ... [more]

Unknown May. 29, 2011; 0(0); [Pubmed: 21623372]

Quantitative Score

  • -0.0807 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • cut-off value: interaction score > .08 and < -.08

Curated By

  • BioGRID