BAIT

ATP14

F1F0 ATP synthase subunit h, L000003379, YLR295C
Subunit h of the F0 sector of mitochondrial F1F0 ATP synthase; F1F0 ATP synthase is a large, evolutionarily conserved enzyme complex required for ATP synthesis; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

CYT1

CTC1, YOR29-16, ubiquinol--cytochrome-c reductase catalytic subunit CYT1, L000000472, YOR065W
Cytochrome c1; component of the mitochondrial respiratory chain; expression is regulated by the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex
Saccharomyces cerevisiae (S288c)

Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

An integrated approach to characterize genetic interaction networks in yeast metabolism.

Szappanos B, Kovacs K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, Gelius-Dietrich G, Lercher MJ, Jelasity M, Myers CL, Andrews BJ, Boone C, Oliver SG, Pal C, Papp B

Although experimental and theoretical efforts have been applied to globally map genetic interactions, we still do not understand how gene-gene interactions arise from the operation of biomolecular networks. To bridge the gap between empirical and computational studies, we i, quantitatively measured genetic interactions between ∼185,000 metabolic gene pairs in Saccharomyces cerevisiae, ii, superposed the data on a detailed systems biology ... [more]

Unknown May. 29, 2011; 0(0); [Pubmed: 21623372]

Quantitative Score

  • 0.1261 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • cut-off value: interaction score > .08 and < -.08

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ATP14 CYT1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1767BioGRID
399689
ATP14 CYT1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2241BioGRID
2153869

Curated By

  • BioGRID