BAIT

NMT1

CDC72, glycylpeptide N-tetradecanoyltransferase NMT1, L000001259, YLR195C
N-myristoyl transferase; catalyzes the cotranslational, covalent attachment of myristic acid to the N-terminal glycine residue of several proteins involved in cellular growth and signal transduction
GO Process (2)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

COX6

cytochrome c oxidase subunit VI, L000000390, YHR051W
Subunit VI of cytochrome c oxidase (Complex IV); Complex IV is the terminal member of the mitochondrial inner membrane electron transport chain; expression is regulated by oxygen levels
GO Process (1)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

An integrated approach to characterize genetic interaction networks in yeast metabolism.

Szappanos B, Kovacs K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, Gelius-Dietrich G, Lercher MJ, Jelasity M, Myers CL, Andrews BJ, Boone C, Oliver SG, Pal C, Papp B

Although experimental and theoretical efforts have been applied to globally map genetic interactions, we still do not understand how gene-gene interactions arise from the operation of biomolecular networks. To bridge the gap between empirical and computational studies, we i, quantitatively measured genetic interactions between ∼185,000 metabolic gene pairs in Saccharomyces cerevisiae, ii, superposed the data on a detailed systems biology ... [more]

Unknown May. 29, 2011; 0(0); [Pubmed: 21623372]

Quantitative Score

  • -0.2166 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • cut-off value: interaction score > .08 and < -.08

Curated By

  • BioGRID