BAIT

GRS2

putative glycine--tRNA ligase, YPR081C
Glycine-tRNA synthetase, not expressed under normal growth conditions; expression is induced under heat, oxidative, pH, or ethanol stress conditions; more stable than the major glycine-tRNA synthetase Grs1p at 37 deg C; GRS2 has a paralog, GRS1, that arose from the whole genome duplication
GO Process (1)
GO Function (1)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

IPT1

KTI6, MIC2, SYR4, inositolphosphotransferase, L000004226, L000003534, S000029294, YDR072C
Inositolphosphotransferase; involved in synthesis of mannose-(inositol-P)2-ceramide (M(IP)2C), the most abundant sphingolipid; can mutate to resistance to the antifungals syringomycin E and DmAMP1 and to K. lactis zymocin
GO Process (2)
GO Function (1)
GO Component (1)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

An integrated approach to characterize genetic interaction networks in yeast metabolism.

Szappanos B, Kovacs K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, Gelius-Dietrich G, Lercher MJ, Jelasity M, Myers CL, Andrews BJ, Boone C, Oliver SG, Pal C, Papp B

Although experimental and theoretical efforts have been applied to globally map genetic interactions, we still do not understand how gene-gene interactions arise from the operation of biomolecular networks. To bridge the gap between empirical and computational studies, we i, quantitatively measured genetic interactions between ∼185,000 metabolic gene pairs in Saccharomyces cerevisiae, ii, superposed the data on a detailed systems biology ... [more]

Unknown May. 29, 2011; 0(0); [Pubmed: 21623372]

Quantitative Score

  • -0.173 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • cut-off value: interaction score > .08 and < -.08

Curated By

  • BioGRID