BAIT
CUP9
L000000442, YPL177C
Homeodomain-containing transcriptional repressor; regulates expression of PTR2, which encodes a major peptide transporter; imported peptides activate ubiquitin-dependent proteolysis, resulting in degradation of Cup9p and de-repression of PTR2 transcription; CUP9 has a paralog, TOS8, that arose from the whole genome duplication; protein abundance increases in response to DNA replication stress
GO Process (2)
GO Function (4)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II repressing transcription factor binding [IPI]
- sequence-specific DNA binding [IDA]
- sequence-specific transcription regulatory region DNA binding RNA polymerase II transcription factor recruiting transcription factor activity [IC]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II repressing transcription factor binding [IPI]
- sequence-specific DNA binding [IDA]
- sequence-specific transcription regulatory region DNA binding RNA polymerase II transcription factor recruiting transcription factor activity [IC]
Saccharomyces cerevisiae (S288c)
PREY
RPD3
MOF6, REC3, SDI2, SDS6, histone deacetylase RPD3, L000001696, L000001603, YNL330C
Histone deacetylase, component of both the Rpd3S and Rpd3L complexes; regulates transcription, silencing, autophagy and other processes by influencing chromatin remodeling; forms at least two different complexes which have distinct functions and members; Rpd3(L) recruitment to the subtelomeric region is regulated by interaction with the arginine methyltransferase, Hmt1p
GO Process (19)
GO Function (3)
GO Component (6)
Gene Ontology Biological Process
- chromatin organization involved in regulation of transcription [IMP]
- histone H3 deacetylation [IMP]
- histone H4 deacetylation [IMP]
- negative regulation of chromatin silencing at rDNA [IMP]
- negative regulation of chromatin silencing at silent mating-type cassette [IMP]
- negative regulation of chromatin silencing at telomere [IDA, IMP]
- negative regulation of reciprocal meiotic recombination [IMP]
- negative regulation of transcription during meiosis [IMP]
- negative regulation of transcription from RNA polymerase I promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IGI, IMP, IPI]
- positive regulation of macroautophagy [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IGI, IMP]
- protein localization to nucleolar rDNA repeats [IMP]
- regulation of DNA-dependent DNA replication initiation [IGI, IMP]
- regulation of transcription involved in G1/S transition of mitotic cell cycle [IGI, IPI]
- regulation of transcription involved in G2/M transition of mitotic cell cycle [IGI]
- replicative cell aging [IMP]
- transcription elongation from RNA polymerase II promoter [IGI]
- transfer RNA gene-mediated silencing [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Rewiring of genetic networks in response to DNA damage.
Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They ... [more]
Science Dec. 03, 2010; 330(6009);1385-9 [Pubmed: 21127252]
Quantitative Score
- -3.590743 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID