BAIT

HCM1

L000000757, YCR065W
Forkhead transcription factor; drives S-phase specific expression of genes involved in chromosome segregation, spindle dynamics, and budding; suppressor of calmodulin mutants with specific SPB assembly defects; telomere maintenance role; regulates replicative lifespan; ortholog of C. elegans lifespan regulator PHA-4
Saccharomyces cerevisiae (S288c)
PREY

SWC5

AOR1, L000004001, YBR231C
Component of the SWR1 complex; complex exchanges histone variant H2AZ (Htz1p) for chromatin-bound histone H2A; protein abundance increases in response to DNA replication stress; relocalizes to the cytosol in response to hypoxia
GO Process (2)
GO Function (0)
GO Component (3)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Rewiring of genetic networks in response to DNA damage.

Bandyopadhyay S, Mehta M, Kuo D, Sung MK, Chuang R, Jaehnig EJ, Bodenmiller B, Licon K, Copeland W, Shales M, Fiedler D, Dutkowski J, Guenole A, van Attikum H, Shokat KM, Kolodner RD, Huh WK, Aebersold R, Keogh MC, Krogan NJ, Ideker T

Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They ... [more]

Science Dec. 03, 2010; 330(6009);1385-9 [Pubmed: 21127252]

Quantitative Score

  • -5.593704 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
HCM1 SWC5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-11.6969BioGRID
213795
HCM1 SWC5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1533BioGRID
361579
HCM1 SWC5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2193BioGRID
2087447
HCM1 SWC5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
341860

Curated By

  • BioGRID