SPS18
Gene Ontology Biological Process
SKO1
Gene Ontology Biological Process
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA, IMP]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IMP]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA, IMP]
- RNA polymerase II repressing transcription factor binding [IDA]
- RNA polymerase II transcription factor binding transcription factor activity involved in negative regulation of transcription [IGI, IMP]
- mitogen-activated protein kinase binding [IDA, IMP]
- sequence-specific transcription regulatory region DNA binding RNA polymerase II transcription factor recruiting transcription factor activity [IMP]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA, IMP]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IMP]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA, IMP]
- RNA polymerase II repressing transcription factor binding [IDA]
- RNA polymerase II transcription factor binding transcription factor activity involved in negative regulation of transcription [IGI, IMP]
- mitogen-activated protein kinase binding [IDA, IMP]
- sequence-specific transcription regulatory region DNA binding RNA polymerase II transcription factor recruiting transcription factor activity [IMP]
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Rewiring of genetic networks in response to DNA damage.
Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They ... [more]
Quantitative Score
- -2.846475 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions).
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SPS18 SKO1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.0339 | BioGRID | 510616 |
Curated By
- BioGRID