EAF3
Gene Ontology Biological Process
- DNA repair [IDA]
- histone acetylation [IDA]
- histone deacetylation [IMP]
- negative regulation of antisense RNA transcription [IMP]
- negative regulation of transcription, DNA-templated [IMP]
- regulation of DNA-dependent DNA replication initiation [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SWR1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Rewiring of genetic networks in response to DNA damage.
Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They ... [more]
Quantitative Score
- -3.097119 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: resistance to chemicals (APO:0000087)
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants in MMS-treated conditions. Genetic interactions were considered significant if they had an S score >=2.0 for positive interactions (epistatic or suppressor interactions) and S score <=2.5 for negative interactions (synthetic sick/lethal interactions).
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions).
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
EAF3 SWR1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.109 | BioGRID | 2443563 | |
EAF3 SWR1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.8306 | BioGRID | 508599 | |
SWR1 EAF3 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 517101 | |
EAF3 SWR1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 452912 | |
EAF3 SWR1 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene. | High | - | BioGRID | 505599 |
Curated By
- BioGRID