BAIT
FKH2
forkhead family transcription factor FKH2, L000002608, YNL068C
Forkhead family transcription factor; plays a major role in the expression of G2/M phase genes; positively regulates transcriptional elongation; facilitates clustering and activation of early-firing replication origins; negative role in chromatin silencing at HML and HMR; substrate of the Cdc28p/Clb5p kinase; relocalizes to the cytosol in response to hypoxia; FKH2 has a paralog, FKH1, that arose from the whole genome duplication
GO Process (10)
GO Function (8)
GO Component (4)
Gene Ontology Biological Process
- chromatin remodeling [IGI, IMP]
- mitochondrion organization [IBA]
- negative regulation of chromatin silencing at silent mating-type cassette [IGI, IMP]
- negative regulation of pseudohyphal growth [IGI, IMP]
- negative regulation of transcription involved in G1/S transition of mitotic cell cycle [IGI]
- negative regulation of transcription involved in G2/M transition of mitotic cell cycle [IGI]
- positive regulation of DNA-dependent DNA replication initiation [IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IGI, IMP]
- positive regulation of transcription involved in G2/M transition of mitotic cell cycle [IGI, IMP]
- regulation of sequence-specific DNA binding transcription factor activity [IBA]
Gene Ontology Molecular Function- DNA replication origin binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IBA]
- RNA polymerase II transcription factor binding [IDA, IMP]
- RNA polymerase II transcription factor binding transcription factor activity [IDA, IGI, IMP]
- double-stranded DNA binding [IBA]
- sequence-specific DNA binding [IDA]
- transcription factor binding [IBA]
- DNA replication origin binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IBA]
- RNA polymerase II transcription factor binding [IDA, IMP]
- RNA polymerase II transcription factor binding transcription factor activity [IDA, IGI, IMP]
- double-stranded DNA binding [IBA]
- sequence-specific DNA binding [IDA]
- transcription factor binding [IBA]
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
MAC1
CUA1, L000000973, L000001035, YMR021C
Copper-sensing transcription factor; involved in regulation of genes required for high affinity copper transport; required for regulation of yeast copper genes in response to DNA-damaging agents; undergoes changes in redox state in response to changing levels of copper or MMS
GO Process (3)
GO Function (2)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Rewiring of genetic networks in response to DNA damage.
Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They ... [more]
Science Dec. 03, 2010; 330(6009);1385-9 [Pubmed: 21127252]
Quantitative Score
- -3.99833 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: resistance to chemicals (APO:0000087)
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants in MMS-treated conditions. Genetic interactions were considered significant if they had an S score >=2.0 for positive interactions (epistatic or suppressor interactions) and S score <=2.5 for negative interactions (synthetic sick/lethal interactions).
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID