BAIT

SKO1

ACR1, L000001909, YNL167C
Basic leucine zipper transcription factor of the ATF/CREB family; forms a complex with Tup1p and Cyc8p to both activate and repress transcription; cytosolic and nuclear protein involved in osmotic and oxidative stress responses
Saccharomyces cerevisiae (S288c)
PREY

VMS1

YDR049W
Component of a Cdc48p-complex involved in protein quality control; exhibits cytosolic and ER-membrane localization, with Cdc48p, during normal growth, and contributes to ER-associated degradation (ERAD) of specific substrates at a step after their ubiquitination; forms a mitochondrially-associated complex with Cdc48p and Npl4p under oxidative stress that is required for ubiquitin-mediated mitochondria-associated protein degradation (MAD); conserved in C. elegans and humans
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Rewiring of genetic networks in response to DNA damage.

Bandyopadhyay S, Mehta M, Kuo D, Sung MK, Chuang R, Jaehnig EJ, Bodenmiller B, Licon K, Copeland W, Shales M, Fiedler D, Dutkowski J, Guenole A, van Attikum H, Shokat KM, Kolodner RD, Huh WK, Aebersold R, Keogh MC, Krogan NJ, Ideker T

Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They ... [more]

Science Dec. 03, 2010; 330(6009);1385-9 [Pubmed: 21127252]

Quantitative Score

  • -3.402456 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: resistance to chemicals (APO:0000087)
  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants in MMS-treated conditions. Genetic interactions were considered significant if they had an S score >=2.0 for positive interactions (epistatic or suppressor interactions) and S score <=2.5 for negative interactions (synthetic sick/lethal interactions).

Curated By

  • BioGRID