BAIT
FKH1
forkhead family transcription factor FKH1, L000002607, YIL131C
Forkhead family transcription factor; minor role in expression of G2/M phase genes; negatively regulates transcription elongation; positive role in chromatin silencing at HML, HMR; facilitates clustering and activation of early-firing replication origins; binds to recombination enhancer near HML, regulates donor preference during mating-type switching; relocalizes to cytosol in response to hypoxia; FKH1 has a paralog, FKH2, that arose from the whole genome duplication
GO Process (14)
GO Function (9)
GO Component (4)
Gene Ontology Biological Process
- cellular response to methylmercury [IGI, IMP]
- chromatin remodeling [IGI, IMP]
- donor selection [IGI, IMP]
- mRNA 3'-end processing [IMP]
- mitochondrion organization [IBA]
- negative regulation of pseudohyphal growth [IGI]
- negative regulation of transcription elongation from RNA polymerase II promoter [IGI, IMP]
- negative regulation of transcription involved in G1/S transition of mitotic cell cycle [IGI]
- negative regulation of transcription involved in G2/M transition of mitotic cell cycle [IMP]
- positive regulation of DNA-dependent DNA replication initiation [IMP]
- positive regulation of chromatin silencing at silent mating-type cassette [IGI, IMP]
- positive regulation of transcription involved in G2/M transition of mitotic cell cycle [IGI]
- regulation of sequence-specific DNA binding transcription factor activity [IBA]
- termination of RNA polymerase II transcription [IGI, IMP]
Gene Ontology Molecular Function- DNA replication origin binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IGI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA, IGI]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IBA]
- centromeric DNA binding [IDA]
- double-stranded DNA binding [IBA]
- sequence-specific DNA binding [IDA]
- transcription factor binding [IBA]
- DNA replication origin binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IGI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA, IGI]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IBA]
- centromeric DNA binding [IDA]
- double-stranded DNA binding [IBA]
- sequence-specific DNA binding [IDA]
- transcription factor binding [IBA]
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
UPC2
MOX4, YDR213W
Sterol regulatory element binding protein; induces transcription of sterol biosynthetic genes and of DAN/TIR gene products; relocates from intracellular membranes to perinuclear foci on sterol depletion; UPC2 has a paralog, ECM22, that arose from the whole genome duplication
GO Process (4)
GO Function (2)
GO Component (4)
Gene Ontology Biological Process
- cellular response to hypoxia [IMP]
- positive regulation of ergosterol biosynthetic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of sterol import by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Rewiring of genetic networks in response to DNA damage.
Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They ... [more]
Science Dec. 03, 2010; 330(6009);1385-9 [Pubmed: 21127252]
Quantitative Score
- -4.829977 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
- phenotype: resistance to chemicals (APO:0000087)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants in MMS-treated conditions. Genetic interactions were considered significant if they had an S score >=2.0 for positive interactions (epistatic or suppressor interactions) and S score <=2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID