BAIT

ATP2

F1F0 ATP synthase subunit beta, L000000142, YJR121W
Beta subunit of the F1 sector of mitochondrial F1F0 ATP synthase; which is a large, evolutionarily conserved enzyme complex required for ATP synthesis; F1 translationally regulates ATP6 and ATP8 expression to achieve a balanced output of ATP synthase genes encoded in nucleus and mitochondria; phosphorylated
Saccharomyces cerevisiae (S288c)
PREY

ATP5

OSC1, F1F0 ATP synthase subunit 5, L000000145, YDR298C
Subunit 5 of the stator stalk of mitochondrial F1F0 ATP synthase; F1F0 ATP synthase is a large, evolutionarily conserved enzyme complex required for ATP synthesis; homologous to bovine subunit OSCP (oligomycin sensitivity-conferring protein); phosphorylated
GO Process (1)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Publication

Characterization of the mitochondrial ATP synthase from yeast Saccharomyces cerevisae.

Pagadala V, Vistain L, Symersky J, Mueller DM

The mitochondrial ATP synthase from yeast S. cerevisiae has been genetically modified, purified in a functional form, and characterized with regard to lipid requirement, compatibility with a variety of detergents, and the steric limit with rotation of the central stalk has been assessed. The ATP synthase has been modified on the N-terminus of the β-subunit to include a His(6) tag ... [more]

Unknown Jul. 12, 2011; 0(0); [Pubmed: 21748405]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ATP5 ATP2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
693817
ATP5 ATP2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High10BioGRID
3620949
ATP2 ATP5
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
ATP2 ATP5
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
ATP2 ATP5
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
ATP2 ATP5
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
ATP2 ATP5
Cross-Linking-MS (XL-MS)
Cross-Linking-MS (XL-MS)

An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071).

High-BioGRID
3702567
ATP2 ATP5
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High0.2233BioGRID
535333

Curated By

  • BioGRID