UBC
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- DNA repair [TAS]
- Fc-epsilon receptor signaling pathway [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- G2/M transition of mitotic cell cycle [TAS]
- I-kappaB kinase/NF-kappaB signaling [TAS]
- JNK cascade [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- Notch receptor processing [TAS]
- Notch signaling pathway [TAS]
- RNA metabolic process [TAS]
- T cell receptor signaling pathway [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- activation of MAPK activity [TAS]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent [TAS]
- antigen processing and presentation of peptide antigen via MHC class I [TAS]
- apoptotic process [TAS]
- apoptotic signaling pathway [TAS]
- carbohydrate metabolic process [TAS]
- cellular response to hypoxia [TAS]
- cytokine-mediated signaling pathway [TAS]
- endosomal transport [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- gene expression [TAS]
- glucose metabolic process [TAS]
- glycogen biosynthetic process [TAS]
- innate immune response [TAS]
- intracellular transport of virus [TAS]
- ion transmembrane transport [TAS]
- mRNA metabolic process [TAS]
- membrane organization [TAS]
- mitotic cell cycle [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of epidermal growth factor receptor signaling pathway [TAS]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- negative regulation of transforming growth factor beta receptor signaling pathway [TAS]
- negative regulation of type I interferon production [TAS]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- nucleotide-binding domain, leucine rich repeat containing receptor signaling pathway [TAS]
- nucleotide-binding oligomerization domain containing signaling pathway [TAS]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [TAS]
- positive regulation of NF-kappaB transcription factor activity [TAS]
- positive regulation of apoptotic process [TAS]
- positive regulation of transcription from RNA polymerase II promoter [TAS]
- positive regulation of type I interferon production [TAS]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- protein polyubiquitination [TAS]
- regulation of apoptotic process [TAS]
- regulation of transcription from RNA polymerase II promoter in response to hypoxia [TAS]
- regulation of type I interferon production [TAS]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- small molecule metabolic process [TAS]
- stress-activated MAPK cascade [TAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
- transmembrane transport [TAS]
- viral life cycle [TAS]
- viral process [TAS]
- viral protein processing [TAS]
- virion assembly [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RNF126
Gene Ontology Biological Process
- cytoplasm-associated proteasomal ubiquitin-dependent protein catabolic process [IMP]
- negative regulation of epidermal growth factor receptor signaling pathway [IMP]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IDA]
- protein K48-linked ubiquitination [ISS]
- protein K63-linked ubiquitination [ISS]
- protein monoubiquitination [IDA]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IDA, IMP]
- regulation of cell proliferation [IMP]
- retrograde transport, endosome to Golgi [IMP]
- ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway [IMP]
Gene Ontology Molecular Function
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Large-scale analysis of the human ubiquitin-related proteome.
Protein ubiquitylation contributes to the regulation of many cellular processes including protein degradation, receptor internalization, and repair of DNA damage. We now present a comprehensive characterization of ubiquitin-conjugated and ubiquitin-associated proteins in human cells. The proteins were purified by immunoaffinity chromatography under denaturing or native conditions. They were then digested with trypsin, and the resulting peptides were analyzed by 2-D ... [more]
Throughput
- High Throughput
Ontology Terms
- cell line: hek-293t cell (BTO:0002181)
Additional Notes
- #LPPI
- Likely protein-protein interaction
- native only
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RNF126 UBC | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 735942 | |
UBC RNF126 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | 2376041 | |
UBC RNF126 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | High | - | BioGRID | 3714469 |
Curated By
- BioGRID