MYC
Gene Ontology Biological Process
- MAPK cascade [IMP]
- Notch signaling pathway [TAS]
- branching involved in ureteric bud morphogenesis [ISS]
- canonical Wnt signaling pathway [IDA]
- cell cycle arrest [IDA]
- cellular iron ion homeostasis [IDA]
- cellular response to DNA damage stimulus [IDA]
- cellular response to UV [IEP]
- cellular response to drug [IDA]
- chromatin remodeling [IDA]
- chromosome organization [IDA]
- energy reserve metabolic process [NAS]
- fibroblast apoptotic process [TAS]
- gene expression [TAS]
- negative regulation of apoptotic process [ISS]
- negative regulation of cell division [IDA]
- negative regulation of fibroblast proliferation [IDA]
- negative regulation of monocyte differentiation [IMP]
- negative regulation of stress-activated MAPK cascade [ISS]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- oxygen transport [NAS]
- positive regulation of DNA biosynthetic process [IMP]
- positive regulation of cell proliferation [IDA]
- positive regulation of cysteine-type endopeptidase activity involved in apoptotic process [IDA]
- positive regulation of epithelial cell proliferation [IDA]
- positive regulation of fibroblast proliferation [IDA, IMP]
- positive regulation of mesenchymal cell proliferation [ISS]
- positive regulation of metanephric cap mesenchymal cell proliferation [ISS]
- positive regulation of response to DNA damage stimulus [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP, TAS]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of gene expression [IDA]
- regulation of telomere maintenance [IMP]
- response to drug [IEP]
- response to gamma radiation [IDA]
- response to growth factor [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function- DNA binding [ISS, TAS]
- E-box binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- protein binding [IPI]
- protein complex binding [IDA]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- DNA binding [ISS, TAS]
- E-box binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- protein binding [IPI]
- protein complex binding [IDA]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
PRKDC
Gene Ontology Biological Process
- DNA repair [TAS]
- cellular protein modification process [TAS]
- cellular response to insulin stimulus [IMP]
- double-strand break repair [TAS]
- double-strand break repair via homologous recombination [IBA]
- double-strand break repair via nonhomologous end joining [TAS]
- innate immune response [TAS]
- negative regulation of protein phosphorylation [ISS]
- peptidyl-serine phosphorylation [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of type I interferon production [TAS]
- regulation of circadian rhythm [ISS]
- signal transduction involved in mitotic G1 DNA damage checkpoint [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Large-scale identification of c-MYC-associated proteins using a combined TAP/MudPIT approach.
The c-MYC oncogene encodes a transcription factor, which is sufficient and necessary for the induction of cellular proliferation. However, the c-MYC protein is a relatively weak transactivator suggesting that it may have other functions. To identify protein interactors which may reveal new functions or represent regulators of c-MYC we systematically identified proteins associated with c-MYC in vivo using a proteomic ... [more]
Throughput
- High Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MYC PRKDC | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
MYC PRKDC | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3399209 | |
MYC PRKDC | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | - | BioGRID | - | |
MYC PRKDC | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 1279232 |
Curated By
- BioGRID