ATM
Gene Ontology Biological Process
- DNA damage induced protein phosphorylation [IDA]
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- DNA repair [TAS]
- cell cycle arrest [IMP]
- cellular response to DNA damage stimulus [IMP]
- cellular response to gamma radiation [IDA]
- double-strand break repair [TAS]
- double-strand break repair via homologous recombination [TAS]
- histone mRNA catabolic process [IDA]
- mitotic spindle assembly checkpoint [IMP]
- negative regulation of B cell proliferation [IMP]
- peptidyl-serine phosphorylation [IDA]
- phosphatidylinositol-3-phosphate biosynthetic process [IMP]
- positive regulation of DNA damage response, signal transduction by p53 class mediator [IMP]
- positive regulation of apoptotic process [IMP]
- pre-B cell allelic exclusion [ISS]
- protein autophosphorylation [IDA]
- protein phosphorylation [IDA]
- reciprocal meiotic recombination [TAS]
- replicative senescence [IMP]
- response to ionizing radiation [IDA]
- signal transduction [TAS]
- signal transduction involved in mitotic G2 DNA damage checkpoint [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
DYRK2
Gene Ontology Biological Process
- cellular response to DNA damage stimulus [IEP]
- intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator [IDA]
- negative regulation of NFAT protein import into nucleus [IMP]
- peptidyl-tyrosine phosphorylation [IDA]
- positive regulation of glycogen biosynthetic process [IDA]
- protein phosphorylation [IDA]
- smoothened signaling pathway [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Biochemical Activity (Phosphorylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
ATM augments nuclear stabilization of DYRK2 by inhibiting MDM2 in the apoptotic response to DNA damage.
The tumor suppressor p53 is a transcription factor that regulates cell cycle, DNA repair, senescence, and apoptosis in response to DNA damage. Phosphorylation of p53 at Ser-46 is indispensable for the commitment to apoptotic cell death. A previous study has shown that upon exposure to genotoxic stress, DYRK2 translocates into the nucleus and phosphorylates p53 at Ser-46, thereby inducing apoptosis. ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID