BAIT

ORM2

YLR350W
Protein that mediates sphingolipid homeostasis; evolutionarily conserved, required for resistance to agents that induce unfolded protein response; Orm1p and Orm2p together control membrane biogenesis by coordinating lipid homeostasis with protein quality control; protein abundance increases in response to DNA replication stress; ORM2 has a paralog, ORM1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

EDE1

BUD15, YBL047C
Scaffold protein involved in the formation of early endocytic sites; putative regulator of cytokinesis; homo-oligomerization is required for localization to and organization of endocytic sites; has a network of interactions with other endocytic proteins; binds membranes in a ubiquitin-dependent manner; may also bind ubiquitinated membrane-associated proteins; interacts with Cmk2 and functions upstream of CMK2 in regulating non-apoptotic cell death; homolog of mammalian Eps15
GO Process (4)
GO Function (1)
GO Component (5)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J

To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP ... [more]

J. Cell Biol. Oct. 17, 2011; 195(2);323-40 [Pubmed: 21987634]

Quantitative Score

  • -8.015566318 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions). The authors constructed a mitochondrial-focused genetic interaction map (the MITO-MAP).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ORM2 EDE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3066BioGRID
400722
ORM2 EDE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3063BioGRID
2154802

Curated By

  • BioGRID