BAIT

UPS1

YLR193C
Phosphatidic acid transfer protein; plays a role in phospholipid metabolism by transporting phosphatidic acid from the outer to the inner mitochondrial membrane; localizes to the mitochondrial intermembrane space; null mutant has altered cardiolipin and phosphatidic acid levels; ortholog of human PRELI
Saccharomyces cerevisiae (S288c)
PREY

VPS72

SWC2, YDR485C
Htz1p-binding component of the SWR1 complex; exchanges histone variant H2AZ (Htz1p) for chromatin-bound histone H2A; may function as a lock that prevents removal of H2AZ from nucleosomes; required for vacuolar protein sorting
GO Process (2)
GO Function (1)
GO Component (3)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J

To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP ... [more]

J. Cell Biol. Oct. 17, 2011; 195(2);323-40 [Pubmed: 21987634]

Quantitative Score

  • -4.275427298 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions). The authors constructed a mitochondrial-focused genetic interaction map (the MITO-MAP).

Curated By

  • BioGRID