BAIT
YME1
OSD1, YTA11, i-AAA protease YME1, L000002522, YPR024W
Catalytic subunit of the i-AAA protease complex; complex is located in the mitochondrial inner membrane; responsible for degradation of unfolded or misfolded mitochondrial gene products; serves as a nonconventional translocation motor to pull PNPase into the intermembrane space; also has a role in intermembrane space protein folding; mutation causes an elevated rate of mitochondrial turnover
GO Process (4)
GO Function (1)
GO Component (3)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
SPT6
CRE2, SSN20, chromatin-remodeling histone chaperone SPT6, L000002032, YGR116W
Nucleosome remodeling protein; functions in various aspects of transcription, chromatin maintenance, and RNA processing; required for the maintenance of chromatin structure during transcription in order to inhibit transcription from promoters within the coding region; required for H3K36 trimethylation but not dimethylation by Set2p
GO Process (17)
GO Function (4)
GO Component (3)
Gene Ontology Biological Process
- chromatin maintenance [IMP]
- chromatin organization involved in regulation of transcription [IGI, IMP]
- chromatin remodeling [IGI, IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter by glucose [IMP]
- nucleosome assembly [IDA]
- nucleosome organization [IMP]
- poly(A)+ mRNA export from nucleus [IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription involved in G1/S transition of mitotic cell cycle [IMP]
- regulation of histone H3-K36 methylation [IDA, IMP]
- regulation of mRNA 3'-end processing [IGI, IMP]
- regulation of nucleosome density [IMP]
- regulation of transcription from RNA polymerase II promoter in response to stress [IMP]
- regulation of transcriptional start site selection at RNA polymerase II promoter [IMP]
- transcription antitermination [IGI, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.
To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP ... [more]
J. Cell Biol. Oct. 17, 2011; 195(2);323-40 [Pubmed: 21987634]
Quantitative Score
- -3.669119804 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions). The authors constructed a mitochondrial-focused genetic interaction map (the MITO-MAP).
Curated By
- BioGRID