BAIT

ELO3

SUR4, APA1, SRE1, VBM1, fatty acid elongase ELO3, L000002245, YLR372W
Elongase; involved in fatty acid and sphingolipid biosynthesis; synthesizes very long chain 20-26-carbon fatty acids from C18-CoA primers; involved in regulation of sphingolipid biosynthesis
GO Process (0)
GO Function (0)
GO Component (0)
Saccharomyces cerevisiae (S288c)
PREY

LCB3

LBP1, YSR2, sphinganine kinase LCB3, L000004101, YJL134W
Long-chain base-1-phosphate phosphatase; specific for dihydrosphingosine-1-phosphate, regulates ceramide and long-chain base phosphates levels, involved in incorporation of exogenous long chain bases in sphingolipids; LCB3 has a paralog, YSR3, that arose from the whole genome duplication
GO Process (2)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J

To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP ... [more]

J. Cell Biol. Oct. 17, 2011; 195(2);323-40 [Pubmed: 21987634]

Quantitative Score

  • -9.338155237 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions). The authors constructed a mitochondrial-focused genetic interaction map (the MITO-MAP).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
LCB3 ELO3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-7.3967BioGRID
516017
LCB3 ELO3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2206BioGRID
2137007
LCB3 ELO3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-17.2724BioGRID
894890
ELO3 LCB3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.0833BioGRID
538286
LCB3 ELO3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1587BioGRID
538365
LCB3 ELO3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158204

Curated By

  • BioGRID