BAIT
                         TLG2
L000004228, YOL018C
                         Syntaxin-like t-SNARE; forms a complex with Tlg1p and Vti1p and mediates fusion of endosome-derived vesicles with the late Golgi; binds Vps45p, which prevents Tlg2p degradation and also facilitates t-SNARE complex formation; homologous to mammalian SNARE protein syntaxin 16 (Sx16)
 
                         
                         
                         GO Process (8)
GO Function (1)
GO Component (3)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
                     PREY
                         CDC42
Rho family GTPase CDC42, L000000276, YLR229C
                         Small rho-like GTPase; essential for establishment and maintenance of cell polarity; plays a role late in cell fusion via activation of key cell fusion regulator Fus2p; mutants have defects in the organization of actin and septins
 
                         
                         
                         GO Process (13)
GO Function (1)
GO Component (8)
Gene Ontology Biological Process
- budding cell apical bud growth [IMP]
- budding cell isotropic bud growth [IMP]
- conjugation with cellular fusion [IMP]
- establishment of cell polarity [IMP]
- invasive growth in response to glucose limitation [IMP]
- pheromone-dependent signal transduction involved in conjugation with cellular fusion [IGI, IMP]
- positive regulation of exocytosis [IGI, IMP, IPI]
- positive regulation of pseudohyphal growth [IMP]
- regulation of exit from mitosis [IMP]
- regulation of exocyst localization [IMP]
- regulation of initiation of mating projection growth [IMP]
- regulation of vacuole fusion, non-autophagic [IMP]
- septin ring organization [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
                     Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.
To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP ... [more]
J. Cell Biol. Oct. 17, 2011; 195(2);323-40 [Pubmed: 21987634]
 
             Quantitative Score
- -8.617521984 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions). The authors constructed a mitochondrial-focused genetic interaction map (the MITO-MAP).
Curated By
- BioGRID