BAIT

MMM1

YME6, ERMES complex subunit MMM1, L000001124, YLL006W
ER integral membrane protein, ERMES complex subunit; ERMES links the ER to mitochondria and may promote inter-organellar calcium and phospholipid exchange as well as coordinating mitochondrial DNA replication and growth; required for mitophagy; ERMES complex is often co-localized with peroxisomes and with concentrated areas of pyruvate dehydrogenase
Saccharomyces cerevisiae (S288c)
PREY

FAR3

L000002919, YMR052W
Protein of unknown function; involved in recovery from cell cycle arrest in response to pheromone, in a Far1p-independent pathway; interacts with Far7p, Far8p, Far9p, Far10p, and Far11p; localizes to the endoplasmic reticulum; protein abundance increases in response to DNA replication stress
GO Process (1)
GO Function (0)
GO Component (2)

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J

To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP ... [more]

J. Cell Biol. Oct. 17, 2011; 195(2);323-40 [Pubmed: 21987634]

Quantitative Score

  • -8.451927828 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions). The authors constructed a mitochondrial-focused genetic interaction map (the MITO-MAP).

Curated By

  • BioGRID