BAIT
GEP5
RRG5, YLR091W
Protein of unknown function; required for mitochondrial genome maintenance; detected in highly purified mitochondria in high-throughput studies; null mutant has decreased levels of cardiolipin and phosphatidylethanolamine
GO Process (1)
GO Function (0)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
PSY2
YNL201C
Subunit of protein phosphatase PP4 complex; Pph3p and Psy2p form the active complex, Psy4p may provide additional substrate specificity; regulates recovery from the DNA damage checkpoint, the gene conversion- and single-strand annealing-mediated pathways of meiotic double-strand break repair and efficient Non-Homologous End-Joining (NHEJ) pathway; Pph3p and Psy2p localize to foci on meiotic chromosomes; putative homolog of mammalian R3
GO Process (6)
GO Function (1)
GO Component (3)
Gene Ontology Biological Process
- cellular response to DNA damage stimulus [IGI]
- negative regulation of DNA damage checkpoint [IMP]
- negative regulation of glucose mediated signaling pathway [IMP]
- positive regulation of double-strand break repair via nonhomologous end joining [IMP]
- protein dephosphorylation [IMP]
- signal transduction involved in meiotic recombination checkpoint [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.
To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP ... [more]
J. Cell Biol. Oct. 17, 2011; 195(2);323-40 [Pubmed: 21987634]
Quantitative Score
- -4.369278739 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions). The authors constructed a mitochondrial-focused genetic interaction map (the MITO-MAP).
Curated By
- BioGRID