BAIT

SLM2

LIT1, YNL047C
Phosphoinositide PI4,5P(2) binding protein, forms a complex with Slm1p; acts downstream of Mss4p in a pathway regulating actin cytoskeleton organization in response to stress; phosphorylated by the TORC2 complex; SLM2 has a paralog, SLM1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

PHO91

YNR013C
Low-affinity vacuolar phosphate transporter; exports phosphate from the vacuolar lumen to the cytosol; regulates phosphate and polyphosphate metabolism; acts upstream of Pho81p in regulation of the PHO pathway; deletion of pho84, pho87, pho89, pho90, and pho91 causes synthetic lethality; transcription independent of Pi and Pho4p activity; overexpression results in vigorous growth
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J

To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP ... [more]

J. Cell Biol. Oct. 17, 2011; 195(2);323-40 [Pubmed: 21987634]

Quantitative Score

  • -2.526028754 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions). The authors constructed a mitochondrial-focused genetic interaction map (the MITO-MAP).

Curated By

  • BioGRID