BAIT

ARV1

L000003505, YLR242C
Cortical ER protein; implicated in the membrane insertion of tail-anchored C-terminal single transmembrane domain proteins; may function in transport of glycosylphosphatidylinositol intermediates into ER lumen; required for normal intracellular sterol distribution; human ARV1 required for normal cholesterol and bile acid homeostasis; similar to Nup120p
Saccharomyces cerevisiae (S288c)
PREY

LDB19

ART1, YOR322C
Alpha-arrestin involved in ubiquitin-dependent endocytosis; regulates endocytosis of plasma membrane proteins by recruiting the ubiquitin ligase Rsp5p to its targets; involved in the basal internalization and turnover of alpha-factor receptor Ste2p; recruits ubiquitin ligase Rsp5p to Ste2p via its 2 PPXY motifs; inhibited by Npr1p-mediated phosphorylation, which affects translocation between the cytosol and the plasma membrane
GO Process (2)
GO Function (1)
GO Component (5)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J

To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP ... [more]

J. Cell Biol. Oct. 17, 2011; 195(2);323-40 [Pubmed: 21987634]

Quantitative Score

  • -3.658094196 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions). The authors constructed a mitochondrial-focused genetic interaction map (the MITO-MAP).

Curated By

  • BioGRID