SKI
Gene Ontology Biological Process
- BMP signaling pathway [TAS]
- SMAD protein signal transduction [IDA]
- anterior/posterior axis specification [ISS]
- bone morphogenesis [ISS]
- camera-type eye development [ISS]
- camera-type eye morphogenesis [ISS]
- cell motility [NAS]
- cell proliferation [NAS]
- embryonic limb morphogenesis [ISS]
- face morphogenesis [ISS]
- gene expression [TAS]
- lens morphogenesis in camera-type eye [ISS]
- myelination in peripheral nervous system [ISS]
- myotube differentiation [IDA]
- negative regulation of BMP signaling pathway [IDA, IMP]
- negative regulation of Schwann cell proliferation [IGI]
- negative regulation of activin receptor signaling pathway [IDA]
- negative regulation of cell proliferation [IDA]
- negative regulation of fibroblast proliferation [ISS]
- negative regulation of osteoblast differentiation [IDA]
- negative regulation of transcription from RNA polymerase II promoter [IDA, IMP, TAS]
- negative regulation of transforming growth factor beta receptor signaling pathway [IDA, IGI, IMP]
- neural tube closure [ISS]
- nose morphogenesis [ISS]
- olfactory bulb development [ISS]
- palate development [ISS]
- positive regulation of DNA binding [IDA]
- positive regulation of Wnt signaling pathway [NAS]
- positive regulation of transcription from RNA polymerase II promoter [ISS]
- protein homotrimerization [IDA]
- regulation of apoptotic process [IBA]
- retina development in camera-type eye [ISS]
- skeletal muscle fiber development [ISS]
- somatic stem cell maintenance [ISS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [NAS, TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SMAD2
Gene Ontology Biological Process
- SMAD protein complex assembly [IDA]
- activin receptor signaling pathway [IMP]
- anterior/posterior pattern specification [ISS]
- cell fate commitment [ISS]
- common-partner SMAD protein phosphorylation [IDA]
- gastrulation [TAS]
- gene expression [TAS]
- intracellular signal transduction [ISS]
- mesoderm formation [ISS]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- negative regulation of transcription, DNA-templated [IMP]
- negative regulation of transforming growth factor beta receptor signaling pathway [TAS]
- nodal signaling pathway [IMP]
- palate development [ISS]
- paraxial mesoderm morphogenesis [ISS]
- positive regulation of BMP signaling pathway [IMP]
- positive regulation of epithelial to mesenchymal transition [ISS]
- positive regulation of nodal signaling pathway involved in determination of lateral mesoderm left/right asymmetry [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, ISS, TAS]
- positive regulation of transcription, DNA-templated [IDA, IMP, ISS]
- primary miRNA processing [TAS]
- regulation of binding [ISS]
- regulation of transforming growth factor beta receptor signaling pathway [IMP]
- response to cholesterol [IDA]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [IDA, IMP, TAS]
- zygotic specification of dorsal/ventral axis [IMP]
Gene Ontology Molecular Function- DNA binding [IDA]
- I-SMAD binding [IPI]
- R-SMAD binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- SMAD binding [IPI]
- activating transcription factor binding [IPI]
- co-SMAD binding [IPI]
- double-stranded DNA binding [ISS]
- enhancer binding [IC]
- phosphatase binding [IPI]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transforming growth factor beta receptor binding [IPI]
- transforming growth factor beta receptor, pathway-specific cytoplasmic mediator activity [IDA]
- type I transforming growth factor beta receptor binding [IPI]
- ubiquitin protein ligase binding [IPI]
- DNA binding [IDA]
- I-SMAD binding [IPI]
- R-SMAD binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- SMAD binding [IPI]
- activating transcription factor binding [IPI]
- co-SMAD binding [IPI]
- double-stranded DNA binding [ISS]
- enhancer binding [IC]
- phosphatase binding [IPI]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transforming growth factor beta receptor binding [IPI]
- transforming growth factor beta receptor, pathway-specific cytoplasmic mediator activity [IDA]
- type I transforming growth factor beta receptor binding [IPI]
- ubiquitin protein ligase binding [IPI]
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
The oncoprotein c-ski functions as a direct antagonist of the transforming growth factor-{beta} type I receptor.
The oncoprotein c-Ski has been implicated in the negative regulation of transforming growth factor-β (TGF-β) signaling owing to its ability to repress Smad transcriptional activity via recruitment of a transcriptional corepressor complex containing histone deacetylases. However, c-Ski has also been shown to localize to the cytoplasm, raising the interesting possibility that it might disable TGF-β signaling through alternative mechanisms. Here, ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| SMAD2 SKI | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
| SKI SMAD2 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.9814 | BioGRID | 3288096 | |
| SMAD2 SKI | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 3032469 | |
| SKI SMAD2 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 1508585 | |
| SKI SMAD2 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.984 | BioGRID | 3832587 | |
| SKI SMAD2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| SKI SMAD2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| SMAD2 SKI | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| SKI SMAD2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| SMAD2 SKI | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| SKI SMAD2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| SKI SMAD2 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - | |
| SMAD2 SKI | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - | |
| SMAD2 SKI | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - | |
| SKI SMAD2 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - | |
| SMAD2 SKI | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - | |
| SMAD2 SKI | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | Low | - | BioGRID | - |
Curated By
- BioGRID