ARRB2
Gene Ontology Biological Process
- G-protein coupled receptor internalization [IDA, IMP]
- Notch signaling pathway [TAS]
- blood coagulation [TAS]
- cell chemotaxis [IMP]
- desensitization of G-protein coupled receptor protein signaling pathway by arrestin [IMP]
- negative regulation of NF-kappaB transcription factor activity [IDA]
- negative regulation of natural killer cell mediated cytotoxicity [IMP]
- negative regulation of protein ubiquitination [IDA]
- platelet activation [TAS]
- positive regulation of ERK1 and ERK2 cascade [IDA, IMP]
- positive regulation of protein ubiquitination [IGI]
- positive regulation of receptor internalization [IMP]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IMP]
- protein ubiquitination [IMP]
- receptor internalization [IDA]
- regulation of androgen receptor signaling pathway [IDA]
- transcription from RNA polymerase II promoter [IDA]
- transforming growth factor beta receptor signaling pathway [IDA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
STUB1
Gene Ontology Biological Process
- cellular response to misfolded protein [IDA]
- misfolded or incompletely synthesized protein catabolic process [IDA]
- negative regulation of transforming growth factor beta receptor signaling pathway [TAS]
- positive regulation of chaperone-mediated protein complex assembly [IDA]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process [IDA]
- positive regulation of protein ubiquitination [IDA]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IDA]
- protein K63-linked ubiquitination [IDA]
- protein autoubiquitination [IDA]
- protein maturation [TAS]
- protein polyubiquitination [IDA, IMP]
- regulation of glucocorticoid metabolic process [IDA]
- transforming growth factor beta receptor signaling pathway [TAS]
- ubiquitin-dependent SMAD protein catabolic process [IDA]
- ubiquitin-dependent protein catabolic process [IMP]
Gene Ontology Molecular Function- G-protein coupled receptor binding [IPI]
- Hsp70 protein binding [IDA]
- Hsp90 protein binding [IDA]
- SMAD binding [IDA]
- TPR domain binding [IDA]
- enzyme binding [IPI]
- kinase binding [IPI]
- misfolded protein binding [IDA]
- protein binding [IPI]
- protein binding, bridging [TAS]
- protein homodimerization activity [ISS]
- ubiquitin protein ligase activity [IDA]
- ubiquitin protein ligase binding [IPI]
- ubiquitin-protein transferase activity [IDA, IMP, TAS]
- ubiquitin-ubiquitin ligase activity [ISS]
- G-protein coupled receptor binding [IPI]
- Hsp70 protein binding [IDA]
- Hsp90 protein binding [IDA]
- SMAD binding [IDA]
- TPR domain binding [IDA]
- enzyme binding [IPI]
- kinase binding [IPI]
- misfolded protein binding [IDA]
- protein binding [IPI]
- protein binding, bridging [TAS]
- protein homodimerization activity [ISS]
- ubiquitin protein ligase activity [IDA]
- ubiquitin protein ligase binding [IPI]
- ubiquitin-protein transferase activity [IDA, IMP, TAS]
- ubiquitin-ubiquitin ligase activity [ISS]
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
beta-Arrestins facilitate ubiquitin-dependent degradation of apoptosis signal-regulating kinase 1 (ASK1) and attenuate H2O2-induced apoptosis.
beta-Arrestins are ubiquitously expressed proteins that play important roles in receptor desensitization, endocytosis, proteosomal degradation, apoptosis and signaling. It has been reported that beta-Arrestin2 acts as a scaffold by directly interacting with the JNK3 isoform and recruiting MKK4 and the apoptosis-signaling kinase-1 (ASK1). Here, we report a novel function of beta-Arrestins in regulating H(2)O(2)-induced apoptosis. Our study demonstrates that beta-Arrestins ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID