CDC20
Gene Ontology Biological Process
- activation of anaphase-promoting complex activity involved in meiotic cell cycle [IMP]
- activation of mitotic anaphase-promoting complex activity [IMP]
- mitotic spindle assembly checkpoint [IPI]
- negative regulation of cyclin-dependent protein serine/threonine kinase by cyclin degradation [IMP]
- positive regulation of mitotic metaphase/anaphase transition [IMP]
- positive regulation of protein catabolic process [IMP]
- regulation of meiosis [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CDH1
Gene Ontology Biological Process
- activation of mitotic anaphase-promoting complex activity [IMP]
- negative regulation of spindle pole body separation [IGI, IMP]
- positive regulation of cyclin catabolic process [IDA]
- positive regulation of mitotic metaphase/anaphase transition [IMP]
- positive regulation of protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IDA]
- regulation of cell size [IMP]
Gene Ontology Molecular Function
Phenotypic Enhancement
A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.
Publication
Ubiquitination of Cdc20 by the APC Occurs through an Intramolecular Mechanism.
Cells control progression through late mitosis by regulating Cdc20 and Cdh1, the two mitotic activators of the anaphase-promoting complex (APC). The control of Cdc20 protein levels during the cell cycle is not well understood.Here, we demonstrate that Cdc20 is degraded in budding yeast by multiple APC-dependent mechanisms. We find that the majority of Cdc20 turnover does not involve a second activator ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: protein/peptide accumulation (APO:0000149)
Additional Notes
- mutation of Cdc20 decreases it's turnover in cells, deletion of Cdh1 increases this inhibition
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CDH1 CDC20 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
CDH1 CDC20 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 591365 | |
CDC20 CDH1 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 154574 | |
CDC20 CDH1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low/High | - | BioGRID | 284098 | |
CDC20 CDH1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 644304 |
Curated By
- BioGRID