HSPA8
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- RNA metabolic process [TAS]
- axon guidance [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- membrane organization [TAS]
- negative regulation of fibril organization [IDA]
- negative regulation of transcription, DNA-templated [IDA]
- neurotransmitter secretion [TAS]
- post-Golgi vesicle-mediated transport [TAS]
- protein folding [NAS]
- protein refolding [IDA]
- response to unfolded protein [NAS]
- synaptic transmission [TAS]
Gene Ontology Molecular Function- ATP binding [IDA]
- ATPase activity [IDA]
- ATPase activity, coupled [NAS]
- G-protein coupled receptor binding [IPI]
- MHC class II protein complex binding [IDA]
- enzyme binding [IPI]
- heat shock protein binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IDA]
- ATP binding [IDA]
- ATPase activity [IDA]
- ATPase activity, coupled [NAS]
- G-protein coupled receptor binding [IPI]
- MHC class II protein complex binding [IDA]
- enzyme binding [IPI]
- heat shock protein binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IDA]
Gene Ontology Cellular Component
- Prp19 complex [IDA]
- blood microparticle [IDA]
- clathrin-sculpted gamma-aminobutyric acid transport vesicle membrane [TAS]
- cytosol [IDA, TAS]
- extracellular space [IDA]
- extracellular vesicular exosome [IDA]
- focal adhesion [IDA]
- intracellular [NAS]
- membrane [IDA]
- nucleus [IDA]
- plasma membrane [TAS]
- ribonucleoprotein complex [IDA]
- ubiquitin ligase complex [IDA]
ABL1
Gene Ontology Biological Process
- DNA damage induced protein phosphorylation [IDA]
- Fc-gamma receptor signaling pathway involved in phagocytosis [TAS]
- actin cytoskeleton organization [ISS]
- axon guidance [TAS]
- blood coagulation [TAS]
- cell cycle arrest [TAS]
- cell differentiation [IBA]
- cell migration [IBA]
- cellular protein modification process [NAS]
- cellular response to DNA damage stimulus [IDA]
- cellular response to dopamine [TAS]
- cellular response to oxidative stress [TAS]
- epidermal growth factor receptor signaling pathway [IBA]
- innate immune response [IBA, TAS]
- intrinsic apoptotic signaling pathway in response to DNA damage [TAS]
- mismatch repair [TAS]
- mitochondrial depolarization [TAS]
- mitotic nuclear division [TAS]
- muscle cell differentiation [TAS]
- negative regulation of phospholipase C activity [IMP]
- negative regulation of protein serine/threonine kinase activity [IDA]
- negative regulation of ubiquitin-protein transferase activity [IDA, TAS]
- peptidyl-tyrosine autophosphorylation [IBA]
- peptidyl-tyrosine phosphorylation [IDA, TAS]
- platelet-derived growth factor receptor signaling pathway [IBA]
- positive regulation of apoptotic process [IDA]
- positive regulation of cytosolic calcium ion concentration [IMP]
- positive regulation of muscle cell differentiation [TAS]
- positive regulation of oxidoreductase activity [IDA]
- positive regulation of peptidyl-tyrosine phosphorylation [IDA]
- regulation of actin cytoskeleton reorganization [TAS]
- regulation of autophagy [TAS]
- regulation of cell adhesion [TAS]
- regulation of cell motility [TAS]
- regulation of cell proliferation [IBA]
- regulation of endocytosis [TAS]
- regulation of response to DNA damage stimulus [IDA]
- regulation of transcription, DNA-templated [TAS]
- response to oxidative stress [IGI]
- signal transduction in response to DNA damage [IDA]
Gene Ontology Molecular Function- ATP binding [IDA]
- DNA binding [NAS]
- SH3 domain binding [IPI]
- actin monomer binding [TAS]
- magnesium ion binding [IDA]
- manganese ion binding [IDA]
- mitogen-activated protein kinase binding [IPI]
- nicotinate-nucleotide adenylyltransferase activity [TAS]
- non-membrane spanning protein tyrosine kinase activity [IDA]
- proline-rich region binding [IDA, IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein kinase activity [IDA]
- protein tyrosine kinase activity [IDA]
- receptor binding [IBA]
- syntaxin binding [IPI]
- ATP binding [IDA]
- DNA binding [NAS]
- SH3 domain binding [IPI]
- actin monomer binding [TAS]
- magnesium ion binding [IDA]
- manganese ion binding [IDA]
- mitogen-activated protein kinase binding [IPI]
- nicotinate-nucleotide adenylyltransferase activity [TAS]
- non-membrane spanning protein tyrosine kinase activity [IDA]
- proline-rich region binding [IDA, IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein kinase activity [IDA]
- protein tyrosine kinase activity [IDA]
- receptor binding [IBA]
- syntaxin binding [IPI]
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Bag1 directly routes immature BCR-ABL for proteasomal degradation.
Degradation of BCR-ABL oncoproteins by heat shock protein 90 (Hsp90) inhibitors in chronic myelogenous leukemia is expected to overcome resistance to ABL tyrosine kinase inhibitors. However, the precise mechanisms still remain to be uncovered. We found that while c-Cbl E3 ligase induced ubiquitin-dependent degradation of mature and phosphorylated BCR-ABL proteins, another E3 ligase CHIP (carboxyl terminus of the Hsc70-interacting protein) ... [more]
Throughput
- Low Throughput
Additional Notes
- HSC70 binds the BCR-ABL fusion protein
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| HSPA8 ABL1 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | 591441 |
Curated By
- BioGRID