TIRAP
Gene Ontology Biological Process
- 3'-UTR-mediated mRNA stabilization [IDA]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- TIRAP-dependent toll-like receptor 4 signaling pathway [IDA]
- cell surface receptor signaling pathway [ISS]
- cellular response to bacterial lipopeptide [ISS]
- cellular response to lipoteichoic acid [ISS]
- defense response to Gram-positive bacterium [ISS]
- innate immune response [TAS]
- myeloid cell differentiation [ISS]
- negative regulation of growth of symbiont in host [ISS]
- positive regulation of B cell proliferation [ISS]
- positive regulation of ERK1 and ERK2 cascade [IMP]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IMP]
- positive regulation of JNK cascade [IMP]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of chemokine (C-X-C motif) ligand 1 production [ISS]
- positive regulation of chemokine (C-X-C motif) ligand 2 production [ISS]
- positive regulation of interleukin-12 production [ISS]
- positive regulation of interleukin-15 production [IDA]
- positive regulation of interleukin-6 biosynthetic process [IMP]
- positive regulation of interleukin-8 production [IMP]
- positive regulation of neutrophil chemotaxis [ISS]
- positive regulation of protein homodimerization activity [IDA]
- positive regulation of toll-like receptor 2 signaling pathway [IMP]
- positive regulation of toll-like receptor 3 signaling pathway [ISS]
- positive regulation of toll-like receptor 4 signaling pathway [IMP]
- positive regulation of tumor necrosis factor production [IMP]
- regulation of innate immune response [IC]
- regulation of interferon-beta production [ISS]
- response to lipopolysaccharide [IDA]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
ARAF
Gene Ontology Biological Process
Gene Ontology Molecular Function
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
Mapping a dynamic innate immunity protein interaction network regulating type I interferon production.
To systematically investigate innate immune signaling networks regulating production of type I interferon, we analyzed protein complexes formed after microbial recognition. Fifty-eight baits were associated with 260 interacting proteins forming a human innate immunity interactome for type I interferon (HI5) of 401 unique interactions; 21% of interactions were modulated by RNA, DNA, or LPS. Overexpression and depletion analyses identified 22 ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| TIRAP ARAF | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 594075 |
Curated By
- BioGRID