YWHAE
Gene Ontology Biological Process
- G2/M transition of mitotic cell cycle [TAS]
- apoptotic process [TAS]
- apoptotic signaling pathway [TAS]
- hippo signaling [TAS]
- intracellular signal transduction [TAS]
- intrinsic apoptotic signaling pathway [TAS]
- membrane organization [TAS]
- membrane repolarization during cardiac muscle cell action potential [IC]
- mitotic cell cycle [TAS]
- negative regulation of peptidyl-serine dephosphorylation [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway [TAS]
- regulation of cysteine-type endopeptidase activity involved in apoptotic process [TAS]
- regulation of heart rate by cardiac conduction [IC]
- regulation of heart rate by hormone [NAS]
- regulation of membrane repolarization [IDA]
- regulation of potassium ion transmembrane transporter activity [IDA]
- substantia nigra development [IEP]
Gene Ontology Molecular Function- MHC class II protein complex binding [IDA]
- enzyme binding [IPI]
- histone deacetylase binding [IPI]
- ion channel binding [IPI]
- phosphoprotein binding [IPI]
- phosphoserine binding [IPI]
- poly(A) RNA binding [IDA]
- potassium channel regulator activity [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IPI]
- MHC class II protein complex binding [IDA]
- enzyme binding [IPI]
- histone deacetylase binding [IPI]
- ion channel binding [IPI]
- phosphoprotein binding [IPI]
- phosphoserine binding [IPI]
- poly(A) RNA binding [IDA]
- potassium channel regulator activity [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IPI]
Gene Ontology Cellular Component
BRD4
Gene Ontology Biological Process
- cellular response to DNA damage stimulus [IMP]
- chromatin remodeling [IDA]
- negative regulation of DNA damage checkpoint [IMP]
- positive regulation of G2/M transition of mitotic cell cycle [IMP]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IDA]
- positive regulation of transcription elongation from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- regulation of inflammatory response [IDA]
- regulation of phosphorylation of RNA polymerase II C-terminal domain [IDA]
- regulation of transcription involved in G1/S transition of mitotic cell cycle [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Co-localization
Interaction inferred from two proteins that co-localize in the cell by indirect immunofluorescence only when in addition, if one gene is deleted, the other protein becomes mis-localized. Also includes co-dependent association of proteins with promoter DNA in chromatin immunoprecipitation experiments.
Publication
Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation.
The phosphorylation of the serine 10 at histone H3 has been shown to be important for transcriptional activation. Here, we report the molecular mechanism through which H3S10ph triggers transcript elongation of the FOSL1 gene. Serum stimulation induces the PIM1 kinase to phosphorylate the preacetylated histone H3 at the FOSL1 enhancer. The adaptor protein 14-3-3 binds the phosphorylated nucleosome and recruits ... [more]
Throughput
- Low Throughput
Additional Notes
- ChIP
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| BRD4 YWHAE | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3324866 |
Curated By
- BioGRID