MAGOH
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- RNA splicing [TAS]
- gene expression [TAS]
- mRNA 3'-end processing [TAS]
- mRNA export from nucleus [TAS]
- mRNA metabolic process [TAS]
- mRNA splicing, via spliceosome [IC, TAS]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [IMP, TAS]
- regulation of alternative mRNA splicing, via spliceosome [IMP]
- termination of RNA polymerase II transcription [TAS]
- transcription from RNA polymerase II promoter [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
EIF4A3
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- RNA metabolic process [TAS]
- cytokine-mediated signaling pathway [TAS]
- embryonic cranial skeleton morphogenesis [IMP]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- mRNA splicing, via spliceosome [IC]
- negative regulation of translation [IDA]
- nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay [TAS]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [IMP, TAS]
- nuclear-transcribed mRNA poly(A) tail shortening [TAS]
- positive regulation of translation [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
eIF4A3 is a novel component of the exon junction complex.
The exon junction complex (EJC) is a protein complex that assembles near exon-exon junctions of mRNAs as a result of splicing. EJC proteins play important roles in postsplicing events including mRNA export, cytoplasmic localization, and nonsense-mediated decay. Recent evidence suggests that mRNA translation is also influenced by the splicing history of the transcript. Here we identify eIF4A3, a DEAD-box RNA ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
EIF4A3 MAGOH | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
MAGOH EIF4A3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
EIF4A3 MAGOH | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
MAGOH EIF4A3 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
EIF4A3 MAGOH | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
EIF4A3 MAGOH | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | Low | - | BioGRID | - | |
EIF4A3 MAGOH | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | - |
Curated By
- BioGRID