BAIT

MDM10

FUN37, L000000648, L000001053, YAL010C
Subunit of both the ERMES and the SAM complex; component of ERMES complex which acts as a molecular tether between the mitochondria and the ER, necessary for efficient phospholipid exchange between organelles and for mitophagy; SAM/TOB complex component that functions in the assembly of outer membrane beta-barrel proteins; involved in mitochondrial inheritance and morphology; ERMES complex is often co-localized with peroxisomes and concentrated areas of pyruvate dehydrogenase
Saccharomyces cerevisiae (S288c)
PREY

PHB1

prohibitin subunit PHB1, L000001416, L000001415, YGR132C
Subunit of the prohibitin complex (Phb1p-Phb2p); prohibitin is a 1.2 MDa ring-shaped inner mitochondrial membrane chaperone that stabilizes newly synthesized proteins; determinant of replicative life span; involved in mitochondrial segregation; prohibitin deficiency induces a mitochondrial unfolded protein response (mtUPR)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections.

Kornmann B, Osman C, Walter P

Mitochondria are connected to the endoplasmic reticulum (ER) through specialized protein complexes. We recently identified the ER-mitochondria encounter structure (ERMES) tethering complex, which plays a role in phospholipid exchange between the two organelles. ERMES also has been implicated in the coordination of mitochondrial protein import, mitochondrial DNA replication, and mitochondrial dynamics, suggesting that these interorganelle contact sites play central regulatory ... [more]

Proc. Natl. Acad. Sci. U.S.A. Aug. 23, 2011; 108(34);14151-6 [Pubmed: 21825164]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MDM10 PHB1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2095BioGRID
355214
PHB1 MDM10
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2095BioGRID
382691
PHB1 MDM10
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.122BioGRID
2121413
MDM10 PHB1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
352605
MDM10 PHB1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158253
PHB1 MDM10
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
349727

Curated By

  • BioGRID