BAIT

RPT6

CIM3, CRL3, SCB68, SUG1, proteasome regulatory particle base subunit RPT6, L000002174, L000000406, L000002265, YGL048C
ATPase of the 19S regulatory particle of the 26S proteasome; one of six ATPases of the regulatory particle; involved in the degradation of ubiquitinated substrates; bound by ubiquitin-protein ligases Ubr1p and Ufd4p; localized mainly to the nucleus throughout the cell cycle; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

ECM29

L000003899, YHL030W
Scaffold protein; assists in association of the proteasome core particle with the regulatory particle; inhibits proteasomal ATPase activity; degraded by the mature proteasome after assembly; contains HEAT-like repeats; protein increases in abundance and relocalizes from nucleus to cytoplasm upon DNA replication stress
GO Process (1)
GO Function (1)
GO Component (3)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Publication

Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response.

Park S, Kim W, Tian G, Gygi SP, Finley D

Proteasomes consist of a 19-subunit regulatory particle (RP) and 28-subunit core particle (CP), an α(7)β(7)β(7)α(7) structure. The RP recognizes substrates and translocates them into the CP for degradation. At the RP-CP interface, a heterohexameric Rpt ring joins to a heteroheptameric CP α ring. Rpt C termini insert individually into the α ring pockets to form a salt bridge with a ... [more]

J. Biol. Chem. Oct. 21, 2011; 286(42);36652-66 [Pubmed: 21878652]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: resistance to chemicals (APO:0000087)
  • phenotype: heat sensitivity (APO:0000147)
  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • deletion of ecm29 partially rescues the sensitivity to heat and chemicals such as rapamycin, SD-Arg and Canavanine seen in an Rpt6 mutant

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ECM29 RPT6
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPT6 ECM29
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High6BioGRID
3614644
ECM29 RPT6
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
ECM29 RPT6
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1993BioGRID
2046800
RPT6 ECM29
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
615272

Curated By

  • BioGRID