BAIT

MYO2

CDC66, myosin 2, L000001223, YOR326W
Type V myosin motor involved in actin-based transport of cargos; required for the polarized delivery of secretory vesicles, the vacuole, late Golgi elements, peroxisomes, and the mitotic spindle; MYO2 has a paralog, MYO4, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

SEC3

PSL1, L000001829, L000001520, YER008C
Subunit of the exocyst complex; the exocyst mediates polarized targeting and tethering of post-Golgi secretory vesicles to sites of exocytosis prior to SNARE-mediated fusion; PtdIns[4,5]P2-binding protein that localizes to exocytic sites in a Rho1p-dependent, actin-independent manner, targeting and anchoring the exocyst to the plasma membrane with Exo70p; direct GTP Rho1p effector; required for ER inheritance; relocalizes away from bud neck upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Publication

Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex.

Jin Y, Sultana A, Gandhi P, Franklin E, Hamamoto S, Khan AR, Munson M, Schekman R, Weisman LS

Vesicle transport requires four steps: vesicle formation, movement, tethering, and fusion. In yeast, two Rab GTPases, Ypt31/32, are required for post-Golgi vesicle formation. A third Rab GTPase, Sec4, and the exocyst act in tethering and fusion of these vesicles. Vesicle production is coupled to transport via direct interaction between Ypt31/32 and the yeast myosin V, Myo2. Here we show that ... [more]

Dev. Cell Dec. 13, 2011; 21(6);1156-70 [Pubmed: 22172676]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MYO2 SEC3
PCA
PCA

A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.

High-BioGRID
-
SEC3 MYO2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
162738

Curated By

  • BioGRID