BAIT

SSA2

YG102, Hsp70 family chaperone SSA2, L000002070, YLL024C
ATP-binding protein; involved in protein folding and vacuolar import of proteins; member of heat shock protein 70 (HSP70) family; associated with the chaperonin-containing T-complex; present in the cytoplasm, vacuolar membrane and cell wall; 98% identical with paralog Ssa1p, but subtle differences between the two proteins provide functional specificity with respect to propagation of yeast [URE3] prions and vacuolar-mediated degradations of gluconeogenesis enzymes
Saccharomyces cerevisiae (S288c)
PREY

SSA4

YG107, Hsp70 family chaperone SSA4, L000002072, YER103W
Heat shock protein that is highly induced upon stress; plays a role in SRP-dependent cotranslational protein-membrane targeting and translocation; member of the HSP70 family; cytoplasmic protein that concentrates in nuclei upon starvation; SSA4 has a paralog, SSA3, that arose from the whole genome duplication
GO Process (3)
GO Function (2)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

The protein chaperone Ssa1 affects mRNA localization to the mitochondria.

Eliyahu E, Lesnik C, Arava Y

Many nuclear-transcribed mRNAs encoding mitochondrial proteins are localized near the mitochondrial outer membrane. A yet unresolved question is whether protein synthesis is important for transport of these mRNAs to their destination. Herein we present a connection between mRNA localization in yeast and the protein chaperone Ssa1. Ssa1 depletion lowered mRNA association with mitochondria while its overexpression increased it. A genome-wide ... [more]

FEBS Lett. Jan. 02, 2012; 586(1);64-9 [Pubmed: 22138184]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: protein/peptide distribution (APO:0000209)

Additional Notes

  • genetic complex
  • lack of protein localization to the mitochondrion is enhanced in an ssa1/ssa2/ssa3/ssa4 quadruple mutant beyond the defects seen in an ssa1/ssa2 double mutant

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SSA4 SSA2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
333997
SSA2 SSA4
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
333998
SSA4 SSA2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High7BioGRID
3605243
SSA2 SSA4
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
255450
SSA2 SSA4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
3587822
SSA2 SSA4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158942

Curated By

  • BioGRID