BTRC
Gene Ontology Biological Process
- G2/M transition of mitotic cell cycle [TAS]
- SCF-dependent proteasomal ubiquitin-dependent protein catabolic process [IBA]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- mitotic cell cycle [TAS]
- negative regulation of sequence-specific DNA binding transcription factor activity [TAS]
- negative regulation of smoothened signaling pathway [TAS]
- negative regulation of transcription, DNA-templated [IMP]
- positive regulation of circadian rhythm [ISS]
- positive regulation of proteolysis [IMP]
- positive regulation of transcription, DNA-templated [ISS]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IDA]
- protein dephosphorylation [ISS]
- protein destabilization [IMP]
- protein ubiquitination [IDA]
- regulation of circadian rhythm [IDA]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- signal transduction [TAS]
- ubiquitin-dependent protein catabolic process [IDA]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
HRAS
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MAPK cascade [TAS]
- Ras protein signal transduction [IDA, TAS]
- activation of MAPKK activity [TAS]
- axon guidance [TAS]
- blood coagulation [TAS]
- cell cycle arrest [IDA, IMP]
- cell surface receptor signaling pathway [TAS]
- cellular senescence [IDA]
- chemotaxis [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- insulin receptor signaling pathway [TAS]
- leukocyte migration [TAS]
- mitotic cell cycle checkpoint [IDA]
- negative regulation of Rho GTPase activity [IDA]
- negative regulation of cell proliferation [IDA]
- negative regulation of gene expression [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- organ morphogenesis [TAS]
- positive regulation of DNA replication [IDA]
- positive regulation of ERK1 and ERK2 cascade [IDA]
- positive regulation of JNK cascade [IDA]
- positive regulation of MAP kinase activity [IDA]
- positive regulation of MAPK cascade [IDA]
- positive regulation of Rac GTPase activity [IDA]
- positive regulation of actin cytoskeleton reorganization [IDA]
- positive regulation of cell migration [IDA]
- positive regulation of cell proliferation [IDA]
- positive regulation of epithelial cell proliferation [IMP]
- positive regulation of miRNA metabolic process [IDA]
- positive regulation of protein phosphorylation [IDA]
- positive regulation of ruffle assembly [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of wound healing [IDA]
- signal transduction [NAS]
- small GTPase mediated signal transduction [TAS]
- synaptic transmission [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
H-Ras is degraded by Wnt/beta-catenin signaling via beta-TrCP-mediated polyubiquitylation.
Ras is an important proto-protein that is regulated primarily by GDP/GTP exchange. Here, we report a novel regulatory mechanism whereby turnover of both endogenous and overexpressed H-Ras protein is controlled by beta-TrCP-mediated ubiquitylation, proteasomal degradation and the Wnt/beta-catenin signaling pathway. The interaction of H-Ras with the WD40 domain of beta-TrCP targeted H-Ras for polyubiquitylation and degradation. This process was stimulated ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| HRAS BTRC | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| HRAS BTRC | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID