BAIT

APN2

ETH1, DNA-(apurinic or apyrimidinic site) lyase APN2, L000004434, YBL019W
Class II abasic (AP) endonuclease involved in repair of DNA damage; homolog of human HAP1 and E. coli exoIII
GO Process (1)
GO Function (3)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

SML1

ribonucleotide reductase inhibiting protein SML1, L000004580, YML058W
Ribonucleotide reductase inhibitor; involved in regulating dNTP production; regulated by Mec1p and Rad53p during DNA damage and S phase; SML1 has a paralog, DIF1, that arose from the whole genome duplication
GO Process (2)
GO Function (1)
GO Component (2)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Abasic sites linked to dUTP incorporation in DNA are a major cause of spontaneous mutations in absence of base excision repair and Rad17-Mec3-Ddc1 (9-1-1) DNA damage checkpoint clamp in Saccharomyces cerevisiae.

Collura A, Auffret Van Der Kemp P, Boiteux S

In Saccharomyces cerevisiae, inactivation of base excision repair (BER) AP endonucleases (Apn1p and Apn2p) results in constitutive phosphorylation of Rad53p and delay in cell cycle progression at the G2/M transition. These data led us to investigate genetic interactions between Apn1p, Apn2p and DNA damage checkpoint proteins. The results show that mec1 sml1, rad53 sml1 and rad9 is synthetic lethal with ... [more]

DNA Repair (Amst.) Mar. 01, 2012; 11(3);294-303 [Pubmed: 22226374]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • deletion of mec1/sml1 causes lethality in an apn1/apn2 mutant background
  • deletion of rad53/sml1 causes lethality in an apn1/apn2 mutant background
  • genetic complex

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
APN2 SML1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
617518

Curated By

  • BioGRID