BAIT

MYO2

CDC66, myosin 2, L000001223, YOR326W
Type V myosin motor involved in actin-based transport of cargos; required for the polarized delivery of secretory vesicles, the vacuole, late Golgi elements, peroxisomes, and the mitotic spindle; MYO2 has a paralog, MYO4, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

KES1

BSR3, LPI3, OSH4, oxysterol-binding protein KES1, L000000894, YPL145C
One of seven members of the yeast oxysterol binding protein family; involved in negative regulation of Sec14p-dependent Golgi complex secretory functions, peripheral membrane protein that localizes to the Golgi complex; KES1 has a paralog, HES1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Dosage Growth Defect

A genetic interaction is inferred when over expression or increased dosage of one gene causes a growth defect in a strain that is mutated or deleted for another gene.

Publication

The Sterol-Binding Protein Kes1/Osh4p is a Regulator of Polarized Exocytosis.

Alfaro G, Johansen J, Dighe SA, Duamel G, Kozminski KG, Beh CT

Oxysterol-binding protein (OSBP)-related protein Kes1/Osh4p is implicated in nonvesicular sterol transfer between membranes in Saccharomyces cerevisiae. However, we found that Osh4p associated with exocytic vesicles that move from the mother cell into the bud, where Osh4p facilitated vesicle docking by the exocyst tethering complex at sites of polarized growth on the plasma membrane. Osh4p formed complexes with the small GTPases ... [more]

Unknown Aug. 05, 2011; 0(0); [Pubmed: 21819498]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: heat sensitivity (APO:0000147)
  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • overexpression of Osh2 or Osh4 exacerbates growth defects seen in a Myo2 mutant

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MYO2 KES1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.203BioGRID
417774
MYO2 KES1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1989BioGRID
2019387

Curated By

  • BioGRID