BAIT
RPL13A
ribosomal 60S subunit protein L13A, L13e, L13A, L000004454, YDL082W
Ribosomal 60S subunit protein L13A; not essential for viability; homologous to mammalian ribosomal protein L13, no bacterial homolog; RPL13A has a paralog, RPL13B, that arose from the whole genome duplication
GO Process (1)
GO Function (1)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
RPL13B
ribosomal 60S subunit protein L13B, L13e, L13B, L000004455, YMR142C
Ribosomal 60S subunit protein L13B; not essential for viability; homologous to mammalian ribosomal protein L13, no bacterial homolog; RPL13B has a paralog, RPL13A, that arose from the whole genome duplication
GO Process (1)
GO Function (1)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Ribosome Deficiency Protects Against ER Stress in Saccharomyces cerevisiae.
In Saccharomyces cerevisiae, 59 of the 78 ribosomal proteins are encoded by duplicated genes that, in most cases, encode identical or very similar protein products. However, different sets of ribosomal protein genes have been identified in screens for various phenotypes, including lifespan, budding pattern and drug sensitivities. Due to potential suppressors of growth rate defects among this set of strains ... [more]
Unknown Feb. 29, 2012; 0(0); [Pubmed: 22377630]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Curated By
- BioGRID