BAIT
CALCOCO1
Cocoa, calphoglin, PP13275
calcium binding and coiled-coil domain 1
GO Process (4)
GO Function (9)
GO Component (3)
Gene Ontology Biological Process
Gene Ontology Molecular Function- armadillo repeat domain binding [IPI]
- beta-catenin binding [IPI]
- ligand-dependent nuclear receptor transcription coactivator activity [IDA]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- sequence-specific DNA binding [IDA]
- transcription coactivator activity [IMP, ISS]
- transcription cofactor activity [IDA]
- transcription regulatory region DNA binding [IDA]
- armadillo repeat domain binding [IPI]
- beta-catenin binding [IPI]
- ligand-dependent nuclear receptor transcription coactivator activity [IDA]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- sequence-specific DNA binding [IDA]
- transcription coactivator activity [IMP, ISS]
- transcription cofactor activity [IDA]
- transcription regulatory region DNA binding [IDA]
Homo sapiens
PREY
CTNNB1
CTNNB, MRD19, armadillo, OK/SW-cl.35
catenin (cadherin-associated protein), beta 1, 88kDa
GO Process (48)
GO Function (20)
GO Component (23)
Gene Ontology Biological Process
- Wnt signaling pathway [IDA]
- adherens junction assembly [IMP]
- androgen receptor signaling pathway [NAS]
- apoptotic process [TAS]
- canonical Wnt signaling pathway [IDA]
- canonical Wnt signaling pathway involved in negative regulation of apoptotic process [IMP]
- canonical Wnt signaling pathway involved in positive regulation of cardiac outflow tract cell proliferation [ISS]
- canonical Wnt signaling pathway involved in positive regulation of epithelial to mesenchymal transition [IMP]
- cell adhesion [IMP]
- cellular component disassembly involved in execution phase of apoptosis [TAS]
- cellular response to growth factor stimulus [IMP]
- cellular response to indole-3-methanol [IDA]
- embryonic skeletal limb joint morphogenesis [ISS]
- endothelial tube morphogenesis [IMP]
- epithelial to mesenchymal transition [TAS]
- hair cell differentiation [TAS]
- innate immune response [TAS]
- muscle cell differentiation [TAS]
- negative regulation of cell proliferation [IDA]
- negative regulation of mitotic cell cycle, embryonic [ISS]
- negative regulation of protein sumoylation [IDA]
- negative regulation of transcription, DNA-templated [IMP]
- patterning of blood vessels [IC]
- positive regulation of DNA-templated transcription, initiation [IC]
- positive regulation of apoptotic process [IDA]
- positive regulation of epithelial to mesenchymal transition [IGI]
- positive regulation of heparan sulfate proteoglycan biosynthetic process [IMP]
- positive regulation of histone H3-K4 methylation [IC]
- positive regulation of muscle cell differentiation [TAS]
- positive regulation of neuroblast proliferation [ISS]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription, DNA-templated [IDA, IMP]
- positive regulation of type I interferon production [TAS]
- protein localization to cell surface [IMP]
- regulation of angiogenesis [TAS]
- regulation of calcium ion import [IDA]
- regulation of cell fate specification [IBA]
- regulation of centriole-centriole cohesion [IDA]
- regulation of centromeric sister chromatid cohesion [IMP]
- regulation of fibroblast proliferation [TAS]
- regulation of nephron tubule epithelial cell differentiation [ISS]
- regulation of protein localization to cell surface [IDA]
- regulation of smooth muscle cell proliferation [IMP]
- response to drug [IEP]
- response to estradiol [IDA]
- single organismal cell-cell adhesion [IMP]
- stem cell maintenance [TAS]
- sympathetic ganglion development [ISS]
Gene Ontology Molecular Function- I-SMAD binding [IPI]
- R-SMAD binding [IPI]
- RNA polymerase II activating transcription factor binding [IPI]
- SMAD binding [IPI]
- alpha-catenin binding [IPI]
- androgen receptor binding [NAS]
- cadherin binding [IPI]
- enzyme binding [IPI]
- estrogen receptor binding [IPI]
- euchromatin binding [IDA]
- ion channel binding [IPI]
- kinase binding [IPI]
- nuclear hormone receptor binding [IPI, TAS]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein phosphatase binding [IPI]
- signal transducer activity [NAS]
- transcription coactivator activity [IDA, IMP]
- transcription factor binding [IPI, TAS]
- transcription regulatory region DNA binding [IDA]
- I-SMAD binding [IPI]
- R-SMAD binding [IPI]
- RNA polymerase II activating transcription factor binding [IPI]
- SMAD binding [IPI]
- alpha-catenin binding [IPI]
- androgen receptor binding [NAS]
- cadherin binding [IPI]
- enzyme binding [IPI]
- estrogen receptor binding [IPI]
- euchromatin binding [IDA]
- ion channel binding [IPI]
- kinase binding [IPI]
- nuclear hormone receptor binding [IPI, TAS]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein phosphatase binding [IPI]
- signal transducer activity [NAS]
- transcription coactivator activity [IDA, IMP]
- transcription factor binding [IPI, TAS]
- transcription regulatory region DNA binding [IDA]
Gene Ontology Cellular Component
- adherens junction [IDA]
- beta-catenin destruction complex [IDA]
- beta-catenin-TCF7L2 complex [IDA]
- catenin complex [IDA]
- cell cortex [IDA]
- cell junction [IDA, TAS]
- cell periphery [IDA]
- cell-cell adherens junction [IDA]
- cell-cell junction [IDA]
- centrosome [IDA]
- cytoplasm [IDA]
- cytosol [IDA, TAS]
- extracellular vesicular exosome [IDA]
- focal adhesion [IDA]
- lateral plasma membrane [IDA]
- membrane [ISS]
- nuclear euchromatin [IDA]
- nucleoplasm [TAS]
- nucleus [IDA]
- perinuclear region of cytoplasm [IDA]
- plasma membrane [IDA]
- protein-DNA complex [IDA]
- transcription factor complex [IDA]
Homo sapiens
Phenotypic Enhancement
A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.
Publication
Role of the N-terminal activation domain of the coiled-coil coactivator in mediating transcriptional activation by beta-catenin.
The coiled-coil coactivator (CoCoA) is involved in transcriptional activation of target genes by nuclear receptors and the xenobiotic aryl hydrocarbon receptor, as well as target genes of the Wnt signaling pathway, which is mediated by the lymphocyte enhancer factor (LEF)/T cell factor transcription factors and the coactivator beta-catenin. The recruitment of CoCoA by nuclear receptors is accomplished by the interaction ... [more]
Mol. Endocrinol. Dec. 01, 2006; 20(12);3251-62 [Pubmed: 16931570]
Throughput
- Low Throughput
Additional Notes
- figure 1. CoCoA serves as a coactivator for LEF1/Catenin for transcription activation..
Curated By
- BioGRID